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INTRODUCTION 
 

Physical anisotropy is one of the most interesting forms of matter organization 
that has not received sufficient study yet. Its implications and peculiarities were most 
conspicuous in a mineral study. For this purpose since the beginning of the 19-th 
century a microscope has been used. In 1828 after William Nikol had introduced 
polarizers in a microscope, optical methods occupied an important place in the 
mineral study. Internal laws of their structure enabled Ye.S.Fyodorov and 
V.Goldschmidt to make a complete classification of 230 spatial point groups of 
symmetry related to anisotropy of optical, dielectrical, magnetic, elastic, thermal and 
other properties. Of these the study of anisotropy of elastic properties is most 
important since these properties are associated with the behaviour of a large number 
of diverse construction units, natural objects and materials under load. The theory of 
elastic anisotropy of media has been thoroughly elaborateed in the works of Rayleigh, 
A.E.H.Love, W.Voigt, Y.F.Nye, F.I.Fyodorov, S.G.Lekhnitsky, G.I.Petrashen et al. A 
much worse situation is in the field of experimental methods of its study. On the one 
hand, the use of optical polarization methods for this purpose is limited by the fact 
that the optical elasticity constants of medium are described by the tensor of not 
higher than the second rank, while the elasticity constants of a medium of lower 
symmetry – by the fourth-rank tensor. On the other hand, the study of many objects, 
in particular rocks, by optical methods is limited by their opacity.  

The elaboration of a theory and methods for the study of elastic anisotropy of 
solid media and in particular minerals and rocks is in large demand – without them an 
adequate interpretation of geophysical, seismic and seismological data is impossible.  

Considerable progress in these fields was provided by the works of L.Bergmann, 
L.M.Brekhovskikh, A.N.Guz', K.E.Ermilin, G.V.Farnell, H.Kolsky, 
F.M.Lyakhovitsky, V.E.Lyamov, W.P.Mason, H.J.McSkimin, F.D.Murnaghan, 
Zh.G.Nikiforenko, V.M. Prokhorov, N.N.Puzyryov, R.T.Smith, et al. To determine 
anisotropy paramaters the dynamic ultrasound method is used. The method was 
greatly improved in the works of K.S.Aleksandrov, B.P.Belikov, B.Chick, C.Elbaum, 
E.P.Papadakis, O.G.Shamina, N.N.Silaeva, S.Ya.Sokolov, R.Truel, I.N.Yermolov, et 
al.  

This work outlines the theoretical grounds of propagation of elastic, mainly 
transverse (shear) waves in solid bodies, particular emphasis being placed upon 
practical measurements of anisotropic media properties. The fundamentals of 
acoustopolarisation measurements method are given. The physical essence of a linear 
anisotropic absorption effect (acoustic dichroism) is explained. Based on the analysis 
of laws of reflection in half-space and reflection-transmission on the media boundary, 
the ways of creating efficient transducers and receivers of purely shear linear-
polarized waves are considered. The constructions of combined transducers for 
transition and reception of longitudinal and shear waves as well as transducers for 
determination of elastic constants of anisotropic media have been analyzed, developed 
and tested. Their advantages and disadvantages are shown on the basis of comparative 
tests results. Acoustopolariscopes of three modifications and the ways of conducting 
acoustopolarization measurements are described. The ways of processing the 
measurement results, identification of a symmetry type and elasticity constants of 
anisotropic media are set forth. The rules for constant calculation, for analyses of 
media with rhombic, tetragonal, pseudohexagonal, cubic and isotropic symmetry are 
given. At the same time it is shown that according to the number of the revealed 
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symmetry elements it is possible to analyze media with lower symmetry forms, for 
instance, trigonal et al.  

The concluding sections are dedicated to the experimental study results for elastic 
anisotropy of rock forming minerals and rocks from some deposits (Voche-Lambina 
testing ground, Kola Peninsula, Kola and Ural superdeep boreholes). The possibility 
to determine the direction and comparative value of palaeo- and modern stresses is 
shown on the rocks from the Voche-Lambina testing ground and Ural Borehole SG-4. 

The book is intended for the specialists working in the field of theory and practice 
of determining solid body properties. It may be useful to specialists in acoustics, 
geophysicists and geologists. 

The author expresses his deep appreciation to M.Z.Abdrakhimov, 
O.S.Golovataya, V.P.Gusev, H.Kern (Germany), P.V.Krauklis, A.V.Zharikov, 
S.B.Imasheva, I.L.Il'chenko, R.V.Medvedev, F.P.Mitrofanov, L.L.Panasyan, 
I.A.Panina, G.I.Petrashen', G.T.Prodaivoda, Yu.P.Smirnov, V.I.Starostin, 
N.N.Tesovskaya, V.V.Filippov, N.V.Sharov, V.L.Shkuratnik, Yu.N.Yakovlev for 
support, benevolent treatment, valuable advises and assistance in the monograph 
preparation. Especially thanks I express to my editor prof. C.Gillen. 

The author thanks George Soros, the founder of the International Sientific Fund, 
and the Russian Foundation for Basic Research. The publication of this monograph 
was supported financially by Soros's Fund through the emergency grant and the 
Russian Foundation for Basic Research through project grants 94-05-16034a, 97-05-
64167 and 03-05-64169. Partly the work was fulfilled in the framework of IGCP-
UNESCO Project № 408 and INTAS-01-0314. 
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1. PHYSICAL PRINCIPLES OF ACOUSTOPOLARISATION 

MEASUREMENTS METHOD 
 

1.1. Propagation of elastic waves in transverse-isotropic medium 
 

In general terms, the propagation of elastic waves in anisotropic media is 
described by Green-Christoffel equation [Dieulesaint et Royer, 1974]: 
 

(Гil - δilρV2)Ui = 0,                                                             (1.1) 
 
where Гil = njnkCikjl is Christoffel's tensor, Cikjl are the elasticity constants of an 
anisotropic solid body, nj, nk  are the directional cosines, δil is Kronecher's symbol, ρ 
is the medium density, V is the wave propagation velocity, Ui is the displacement of 
medium particles in the wave.  

For a relatively simple but practically common transverse-isotropic medium the 
components Гil will take the following values:  
 

Γ11 1
2

11 2
2

66 3
2

44= + +n C n C n C , 
 
Γ22 1

2
66 2

2
11 3

2
44= + +n C n C n C , 

 
Γ33 1

2
44 2

2
44 3

2
33= + +n C n C n C , 

 
Γ12 12 66 1 2= +( )C C n n , 
 
Γ13 13 44 1 3= +( )C C n n , 
 
Γ23 23 44 1 3= +( )C C n n ,                                                                                       (1.2) 

 
where Cij are the elasticity constants of an anisotropic solid body, ni are the directional 
cosines. 

These values of Гil can be substituted in Eq. (1.1) and the complete Green-
Christoffel equation for transverse-isotropic medium can be thereby obtained. Three 
independent solutions – three values of elastic wave propagation velocities in one 
direction will determine proper values of Christoffel's tensor. Consider two simple 
cases of elastic wave propagation in a transverse-isotropic medium. 
1. An elastic wave propagates along the symmetry axis OX3. In this case n1 = n2 = 0, 

n3 = 1. From the Green-Christoffel's equation we shall get that  
 

(С33 - ρV2) (С44 - ρV2) (С44 - ρV2) = 0. 
 
Whence it follows that the values of elastic waves propagation velocity will be: 
 

V Cp1 33= ρ ,    V V Cs s1 2 44= = ρ                              (1.3) 
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Thus, during the elastic waves propagation along the symmetry axis only two 
velocities will be observed Vp1 and Vs1 = Vs2  Measuring only these velocity 
parameters it is impossible to conclude whether this medium is anisotropic.  
2. An elastic wave propagates along the axis OX1 (the direction of its propagation is in 
the medium symmetry plane). Such a case is most interesting when analyzing 
anisotropic media. In this case n1 = 1, n2 = n3 = 0. From general equation (1.1) we 
deduce that  
 

(С11 - ρV2) (С66 - ρV2) (С44 - ρV2) = 0. 
 
The last equation has three solutions: 
 

V Cp2 11= ρ ,  V Cs1 44= ρ ,  V Cs2 66= ρ ,                            (1.4) 
 
where Vp2 is the longitudinal wave velocity along the symmetry plane; Vs1 is the shear 
wave velocity with the polarization vector oriented along the normal to the symmetry 
plane; Vs2 is the shear wave velocity with the polarization vector lying in the 
symmetry plane. Similarly, with n1 = 1, n2 = n3 = 0 from Eq. (1.2) we obtain that Г11 = 
C11, Г22 = C66, Г33 = C44. Then the Green-Christofel's equation may be replaced by 
three motion equations:  
 

               ρ
∂
∂

∂
∂

2
1

2 11

2
1

2

U
t

C
U
x

= , 

 

             ρ
∂
∂

∂
∂

2
2

2 44

2
2

2

U
t

C
U
x

= ,       

 

    ρ
∂
∂

∂
∂

2
3

2 66

2
3

2

U
t

C
U
x

= .                                                                             (1.5) 

 
The simplest solutions of wave equations (without regard for absorption) for 

harmonic stationary waves are 
expressions: 
 

A A t
f x

Vp
p

2 0
0

2
0

2
= − +sin( )ω

π
ϕ , 

 

A A t
f x

Vs
s

1 0
0

1
0

2
= − +sin( )ω

π
ϕ ,   

 

A A t
f x

Vs
s

2 0
0

2
0

2
= − +sin( )ω

π
ϕ , 

                                        (1.6) 
 
where ω = 2πf0 is the wave circular 
frequency, x is the distance and ϕ0 is 
the initial phase shift. 

Fig. 1.1. Registration diagram of a quasi-
shear wave propagating through a sample 
with transverse-isotropic symmetry at 
arbitrarily oriented polarization vectors (OPV) 
of transducer and receiver. 
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1.2. Phase difference and phase shift in the wave of shear vibrations 
 

Let us consider a relatively simple but rather well known case where shear waves 
propagate in a medium with transverse-isotropic symmetry. The waves will be 
considered to transmit from a transducer of linear-polarized stationary harmonic shear 
waves to the sample made of transverse-isotropic medium in the direction coinciding 
with the elastic symmetry plane [010] (Fig 1.1).  

In this case perturbations arising in the sample will be described by the 
superposition of amplitudes As1 and  As2. The polarization type of the total shear wave 
will depend on the position of the vector A with respect to the medium symmetry 
elements and the wave x propagation direction. If the vector A lies in the plane [010], 
then the wave harmonic phase along this direction will be described by the expression 
 

Ψ1
1

0

2
= − +ω

π
λ

ϕt
x

. 

 
Along the direction [100] the harmonic phase is 
 

Ψ2
2

0

2
= − +ω

π
λ

ϕt
x

, 

 
where λ1 = Vs1/f0, λ2 = Vs2/f0. At a distance of x from the section [010]-[100] a phase 
difference appears 
 

δ = Ψ1 - Ψ2 = 2πx(1/λ1 – 1/λ2)                                                                         (1.7)  
 

At the increase of the phase difference δ along the propagation way, the change 
of polarization type and polarization vector orientation (PVO) of the total shear wave 
will be observed. If we give the vector A (Fig.1.1) an angle β = 45° or 135°, then, 
when the phase difference 0 < δ  < π/2 (Fig. 1.2), the wave polarization will transform 
from linear to elliptic right-hand and the orientation of the ellipse's longer axis will 
coincide with the PVO when δ = 0.  

When the phase difference reaches the value of δ  = π/2 a circular right-hand 
polarization will be observed. When the phase difference π/2 < δ  < π the polarization 
will again become elliptic. But now the ellipse's longer axis will be rotated through 
90o as compared with the PVO when δ = 0. Furthermore, when δ  = π the polarization 
will become linear, the PVO being 90o in relation to the PVO when δ = 0. Within the 
phase difference π < δ  < 2π a counter-clockwise rotation of the polarization vector is 
observed. The type and parameters of polarization are the same for δ = 5π/4 and δ  = 
3π/4 (elliptic), for δ = 7π/4 and δ  = π/4 (elliptic), for δ  = 3π/2 and δ  = π/2 
(circular). As Fig 1.2 suggests, the type of polarization, the direction of rotation and 
orientation of polarization vectors fully coincide when the phase difference is equal to 
2π. If the phase difference along the sample length is exactly equal to δ  = 2π, the 
type and parameters of polarization do not allow one to distinguish an anisotropic 
sample from an isotropic one.  

Let us consider the propagation process of a quasi-shear wave in the sample, Fig. 
1.1, when the polarization vector of the transducer A and receiver B is arbitrarily 
oriented. For instance, the polarization vector orientation of the transducer makes an 
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angle β with the symmetry plane [010] of the sample; its amplitude is equal to AS. The 
polarization vector orientation of the receiver makes an angle γ with the same plane 
[010], its sensitivity is equal to AR. Having done the decomposition of the polarization 
vector of the transducer A in terms of the symmetry elements [010] and [100] and at a 
distance of x composition of projections on the direction B, we shall obtain, with 
regard to Eq. (1.6), the summary amplitude of the waves AP registered by the receiver: 
 

)].2sin(sinsin)2sin(cos[cos 0
2

0
1

ϕ
λ
πωγβϕ

λ
πωγβ +−++−=

xtxtAAA RSP          (1.8) 

 
Let us follow the variation of the amplitude AP as the sample rotates around the 
direction [001].  

If the orientations of the transducers' vectors A and B coincide, i.e. the 
polarization vectors of the source and receiver are parallel (VP position), then from 
(1.8) we obtain 
 

A A A t
x

t
x

VP S R= − + + − +[cos sin( ) sin sin( )].2

1
0

2

2
0

2 2
β ω

π
λ

ϕ β ω
π
λ

ϕ           (1.9) 

 
If the polarization vectors of the source and receiver are directed at a right angle, 

crossed (VC position), then from (1.8) we obtain 
 

A A A t
x

t
x

VC S R= − + − − +
1
2

2
2 2

1
0

2
0sin [sin( ) sin( )].β ω

π
λ

ϕ ω
π
λ

ϕ            (1.10) 

 
As follows from Eq. (1.9)-(1.10) the amplitudes AVP and AVC depend on the 

sample length x, rotation angle β relative to the plane [010] and current wave phase 

Fig. 1.2. The change of polarization type during shear wave propagation in an 
anisotropic sample. 
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ωt. In a general case when β = 0 the waves ωt get a phase shift. The value of the 
phase shift depends on the angle β and the value of the phase difference δ. 

The solution of Eq. (1.9) and (1.10) when AVP = 0 and AVC = 0, allows one to find 
the values of this phase shift for the VP (ωn0) and VC (ωc0)  
 

A A A t t tVP S R= + + =[cos sin sin cos sin sin sin cos ]2 2 2 0β ω β δ ω δ ω , 
 
whence 
 

ω
δ

β δ
πn arctg

ctg
n0 2=

−
+

±
sin

cos
.                                 (1.11) 

 
Similarly for AVC we obtain 
 

0]sincoscossin[sin2sin
2
1

=−−= δωδωωβ tttAAA RSVC , 

 
whence 
 

ω
δ
δ

πc arctg n0 1
=

+
±

sin
cos

,      (1.12) 

 
where the value of δ is defined by the 
expression (1.7), n = 0, 1, 2, 3…. 

In Fig 1.3 is shown the relation for 
the phase shear ωtc (ωn0), calculated by 
formula (1.11), that will be observed 
when the source and receiver vectors are 
parallel [Gorbatsevich, 1995]. 
As follows from this Figure, when δ = 0, 
180o, ωn0 = 0, at any β. The greatest 
changes in the shear phase value ωn0 are 
observed when β → 90o (270o) and δ → 
90o (270o). The shear phase value ωn0 is 
even with respect to the sign of angle β, 
but in accordance with the value δ it may 
take both positive and negative values. 
The shear value for the wave current phase ωc0 at the transducers VC position 
depends only on the phase difference δ. Similarly, when δ = 0, 180o, the angle ωc0 = 
0. From formula (1.12) it follows that by the value of ωc0 the phase difference δ can 
be calculated.  
 
1.3. Variation of the envelope of stationary shear waves 
 

Let us examine in greater detail Eq. (1.8). With Ferma theorem we shall 
determine the value of the circular frequency ωnm, at which the amplitude ABM takes 
the maximum value: 
 

Fig. 1.3. Dependence of the phase shear 
value ωtc = ωno vs angles β and δ in the VP 
position of the source and receiver. 
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∂
∂ω

β ω β δ ω β δ ω
t

A A t t tS R [cos sin sin cos sin sin sin cos ]2 2 2 0+ + = . 

 
From the above: 
 

            0sinsinsincoscossincoscos 222 =−+ mnmnmn ωδβωδβωβ , 

 
whence 
 

ω
δ

β δ πnm arctg ctg n= + ±
1 2

sin
( cos ) .                                (1.13)  

 
Then if we substitute the value of ωt in Eq. (1.9) for the obtained value of ωnm, we 
will get the equation of the summary wave envelope at the receiving transducer input 
(position VP),  
 

A A AVPM S R= + +cos cos sin cos sin .4 2 2 42β β β δ β                        (1.14)  
 
Similarly we shall analyze Eq. (1.10): 
 

0)]sin([sin2sin
2
1

=+−= δωωβ
∂ω
∂

∂ω
∂ ttAA

tt
A

RS
VC . 

 
From the above equation 
 

ω
δ
δ

πcm arctg n=
−

±
cos

sin
1

.                                       (1.15)  

 
If we substitute ωt in Eq.(1.10) for the obtained value of ωcm, we will receive the 
equation of the harmonic waves envelope at the receiving transducer input (VC 
position), 
 

AVCM = ASAR sin2β(δ/2).                                                (1.16) 
 
Equations (1.11)-(1.16) determine important properties of the amplitudes AVP and AVC 
and their envelopes that are observed with parallel and crossed polarization vectors. 
Equations (1.11) and (1.13) as well as (1.12) and (1.15) show that: 
 

ωnm = ωn0 ± 90o,  
 

ωcm = ωc0 ± 90o.  
 
It means that the angles ωt = ωn0 and ωt = ωc0, at which the amplitudes AVP and AVC 
are equal to zero, are shifted with respect to the same amplitudes' maxima by 90o.  
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1.4. Peculiarities of circle diagrams with parallel and crossed polarization vectors 
 

In accordance with the physical meaning, Eq. (1.9) and (1.10) represent 
instantaneous values of harmonic wave amplitudes at the point in time t. The 
amplitudes AVP and AVC recording is possible, especially at great frequencies, only 
with equipment of high resolution both in time and wave quantity terms. If a signal is 
close to harmonic, it is more convenient to observe variations of the maximum 
amplitudes (envelopes) in the course of the sample rotation (Fig. 1.1) with parallel 
(AVPM) and crossed (AVCM) polarization vectors. The amplitudes AVPM and AVCM 
behavior is described by Eq. (1.14) and (1.16) accordingly. 

By the equations the values of AVPM and AVCM depend only on the value of the 
sample β rotation angle and the phase difference δ. In Figure 1.4 are shown the 
configurations of the envelopes AVPM (solid line) and AVCM (dotted line) with the phase 
difference δ = π/4 observed within the phase difference 0 - 2π [Gorbatsevich, 1982]. 

 

Fig. 1.4. Variation of maximum amplitudes (envelopes) recorded by the receiver with parallel 
(solid line) and crossed (dotted line) polarization vectors of the source and receiver of shear 
waves versus the sample rotation angle β and the phase difference δ. 

 
As Fig 1.4 shows, beyond the dependence versus the rotation angle β of an 

isotropic sample (δ = 0) in the VP position of linear-polarized transducers of shear 
waves, one and the same envelope amplitude equal to AVPM recorded. The 
configurations of the envelopes AVPM and AVCM, obtained as anisotropic samples rotate, 
greatly depend on the value of the phase difference δ. For instance, in the VP position 
the AVPM configuration gradually turns from the circle shape (δ = 0, 2π, 4π…) to a 
symmetric four-petal figure ((δ = π, 3π, 5π…). Beyond the dependence versus the 
value of δ, the greatest amplitudes AVPM are observed when the direction of symmetry 
elements [010] and [100] coincide with the orientation of polarization vectors of the 
source and receiver. With these orientations the value of AVPM (without regard for 
attenuation) is independent of the phase difference δ. The amplitudes AVPM minima 
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will be recorded when the rotation angle β = 45o ± nπ/2. The value of AVPM = 0 with 
the same rotation angles β and the phase difference δ = (2n - 1)π. 

The envelopes AVCM configuration (Fig. 1.4) when an anisotropic sample is 
rotated between the transducers in the position VC is a symmetric four-petal figure 
independently of the phase difference 0 > δ > 2π. This figure is described by the 
function AVCM sin2β. Depending on the value of δ only the maximum amplitude AVCM 

that is observed at the rotation angles βм = 45o + nπ/2, changes. The maximal AVCM (β 
= βм) will be registered by δ = π, 3π, 5π ....When δ = 0 the achievable value of AVCM 
is equal to AVPM. By the value of AVCM according to Eq. (1.16) one may calculate the 
phase difference δ,  

δ
β

π= ± +arcsin
sin

,
A

A A
nVCM

S R 2
2                                   (1.17) 

 
where n = 0, 1, 2, 3…. 

Independently of the value of δ minima AVCM are observed when the orientation 
of symmetry elements [010] and [100] coincides with the orientation of the 
polarization vector of the source or receiver. Thus, strait lines drawn through the 
configuration AVCM minima will always point to the spatial location of the axes or 
planes (their projections) of the symmetry of an anisotropic medium, of which the 
sample is made. On the basis of Fig 1.4 and Eq. (1.14) and (1.16) the following 
conclusions can be drawn: 
1. The envelopes AVPM and AVCM configuration called acoustopolarigrams 

[Gorbatsevich, 1982] are repeated with a step of the phase difference δ = 2π. The 
acoustopolarigrams with δ = (n+k)π are similar to those observed with δ = (n-k)π, 
where n = 0, 1, 2, 3… and the quantity k may take any fractional values. 

2. With the phase difference δ = 2π the acoustopolarigrams reflect the equalities 
AVPM = ASAR and AVCM = 0 independently of the rotation angle β. With phase 
difference δ = (2n+1)π the acoustopolarigrams AVPM and AVCM are the same but 
shifted with respect to each other by 45o. Opposite the maximum AVPM is always 
the minimum AVCM. The minima and maxima of the acoustopolarigrams are 
separated by 90o. 

3. When the values of the phase difference δ are small, relative AVCM variations are 
considerably more distinct than those of AVPM. Polarization measurements of 
amplitudes made in VC position allow one to determine the spatial orientation of 
symmetry axes and planes of an anisotropic sample much more precisely (over the 
measurements in VP position). 

4. The greatest (lowest) velocities of quasi-shear waves propagation should be 
determined in the directions of the strait lines drawn through the symmetry centre 
of the VC acoustopolarigram and the value of AVCM minima. The mentioned 
directions reflect a spatial orientation of the symmetry axes (planes) of an 
anisotropic medium. The dispersion of elastic waves propagation velocity is 
relatively low. Therefore, experimental observations of the acoustoplarigrams 
AVPM and AVCM can be taken over a wide range of frequencies, as well as with the 
use of acoustic impulses.  

5. Due to the revealed shift of the current phase ωt (see Fig. 1.3), one should not 
measure the velocities of quasi-shear waves propagation in anisotropic media by 
observation of the wave phase or by the phase correlation method. The 
measurements by such methods are possible only in the cases when the orientation 
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of the wave shift vector coincides with the orientation of an elastic symmetry 
element (axis or plane) of an anisotropic medium.  

 
1.5. Circle diagrams at time separation of shear pulses 
 

The processes of harmonic stationary wave propagation in an anisotropic medium 
have been considered above. But in the course of practical measurements pulses with 
harmonic filling are used most often. 
This filling is formed through 
piezoelectric transducer (piezoelectric 
ceramic element) waves at natural 
frequency of a mechanical resonance 
[Skuchik, 1976; Tyulin, 1976; 
Glozman, 1972]. The pulse duration 
and the rate of the pulse rise depend 
on the form of the actuating electric 
signal and even more on the degree of 
the piezoelectric ceramic element 
damping [Ermolov, 1981]. 

The above Eq. (1.8-1.16) as well 
as a qualitative assessment by the 
envelopes (Fig. 1.4) can be also 
applied when in the course of 
measurements the pulses with 
harmonic filling are used. But in this 
case the pulses propagating for 
instance, along the directions [100] and [010] for the length of x (Fig. 1.1), should not 
separate spatially. Now let us consider the case when for the length of x the pulses 
separate spatially into S" = S1 and S' = S2, Fig. 1.5.  
Such a separation is observed when  
 

Ti > (x/V1) – (x/V2),                        (1.18)  
 
where Ti is the pulse duration. 

As follows from the last mentioned expression, the 
separation into S1 and S2  can be realized with a 
sufficiently "short" pulse (Ti is small), a rather long 
propagation distance x and a large difference in the 
values of shear waves velocities along the medium 
symmetry elements [100] and [010]. If the source A 
polarization vector and the direction of the receiver B 
greatest sensitivity are parallel, Fig. 1.5a, then, by Eq. 
(1.8), the amplitude of the pulse S1 that was the first to 
cover the distance x, will be equal to 

 

)2sin(cos 0
1

1 ϕ
λ
πωβ +−=

xtAAA RSVP           (1.19)  

 
and the amplitude of the impulse S2 will be 
 

Fig. 1.5. Diagram of a quasi-shear wave 
propagation through an anisotropic sample 
with the spatially separated pulses S1 and S2. 

Fig. 1.6. Change of maxi-
mum amplitudes (envelopes) 
at the source and receiver 
parallel (solid line) and 
crossed (dotted line) polari-
zation vectors, observed at 
the separated pulses S1 and 
S2'. 
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A A A t
x

VP S R2
2

0

2
= − +sin sin( ).β ω

π
λ

ϕ                         (1.20)  

Accordingly, without regard for the attenuation the amplitude AVP1 = A = A010
''  when 

the vector A orientation coincides with the plane [010]. The amplitude AVP2 = A = A100
'  

when the vector A orientation coincides with the axis [100]. It is also true that AVP1 = 0 
when A is directed along the axis [100] and AVP2 = 0 when A is directed along the 
plane [010]. Thus, at the VP position of the source and receiver and separated pulses 
the location of the medium symmetry elements may be determined rather exactly by 
the moments of the pulses attenuation. For instance, the location of the moment [100] 
is determined by the moment of the pulse S1 extinction and that of the element [010] – 
by the moment of the pulse S2 extinction.  

The values of AVP1 = AVP2 = 2 2/ A AS R  when β = 45o ± nπ/2, where n = 0, 1, 
2,…. The shape of the envelope circle diagram (Fig. 1.6), observed at the separated 
pulses S1" and S2', will not change with increasing sample length or frequency f0. Such 
a change is possible only when other effects manifest themselves.  

Now let us consider the case when the orientations of A and B are crossed. As the 
diagram (Fig. 1.5b) suggests, the reception of the waves takes place in the direction B 
that makes a right angle with the direction of the attenuation A. If the vector A makes 
an angle β with the direction [010], its projection will make A010 = Acosβ and in the 
direction A100 = Asinβ. Reflecting the projections A010 and A100 to the direction B we 
obtain that  
 

                AB010 = Acosβcos(90o - β) = Acosβsinβ,    AB100 = Asinβcosβ. 
 

The total amplitude B will be equal to 
 

B = Acosβsinβ + Asinβcosβ =Asin2β.                           (1.21)  
 

The expression (1.21), as a whole, coincides with the more general Eq. (1.10). As 
the waves propagate, after the time Ti has passed, a complete separation of pulses, 
generated by the components A010 and A100, will take place. The faster pulse A010 will 
be in the cross-section [100]"-[010]'', while as a slower one A100 – in the cross-section 
[100]'-[010]'. Accordingly, each of them will create in the receiving transducer, 
oriented in the direction B, the following signal amplitudes: 
 

A A A t
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2
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π
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ϕ                                     (1.22)  
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x
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= − +sin sin( ).β ω
π
λ

ϕ                                       (1.23)  

 
As follows from the last-mentioned expressions, AVC1 = AVC2 = 0 when β = 0 ± nπ/2, 
where n = 0, 1, 2,…. 

So, at the VC position of the source and receiver and separated pulses, the spatial 
location of the medium elements is at the moments of the pulses S1 and S2 
simultaneous attenuation. The shape of the circle diagram VC, Fig. 1.6, will not 
change with increasing sample length or frequency f0. But in the presence of linear 
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acoustic anisotropic absorption [Gorbatsevich, 1982] with increasing x qualitative 
changes of the circle diagrams may occur, Fig. 1.6.  

As a whole, even with the separated pulses observations of the circle diagrams 
enable to determine the spatial location of the elastic symmetry elements of the 
medium under study with a high precision. In this case such a determination can be 
fulfilled both with crossed and parallel polarization vectors of the source and receiver 
of shear waves. 
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2. EFFECT OF LINEAR ACOUSTIC ANISOTROPIC ABSORPTION (LAAA)  
 
2.1. Models of media exhibiting LAAA 
 

Pleochroism or the phenomenon of linear anisotropic absorption is observed as 
the light passes through transparent media [Shurkliff, 1962]. It reflects an ability to 
absorb a beam of the polarized light in various ways when rotating its polarization 
vector with respect to the medium structural elements. In this case, as a rule, the 
greatest absorption of the polarized light is observed when the polarization vector is 
directed along the perpendicular to linearly stretched structural elements of the 
medium. The direction of the light greatest pass coincides with the orientation of 
linear elements. Because of this, the observed phenomenon got the second name – 
linear anisotropic absorption. Some natural minerals – tourmaline, kunzite, cordierite 
exhibit the effect of optical dichroism [Smith, 1972]. On the basis of polyvinyl and 
other compounds high-efficiency polarizers of ordinary light, using the effect of 
pleochroism, have been developed [Zhevandrov, 1978]. 

The effect of linear acoustic anisotropic absorption of elastic waves (LAAA) has 
been studied and used to a much lesser degree. Let us consider, for instance, a device 
that can serve as a passive analyzer to determine the orientation of the polarization 
vector of shear transverse waves emitted by ultrasonic transducers [Proctor, 1971]. 
The device represents a pack of glass plates glued together for example, by wax or 
epoxy resin. But the contact between them may be left dry. Working planes parallel to 
each other are ground to the normal of the faces of the pack of glass plates. Through 
these faces bundles of shear waves are sent into the device.  

On testing of a similar passive analyzer it was revealed that if the polarization 
vector (the direction of the medium particles shift in a wave of shear vibrations) 
coincides with the orientation of the glass plates, then the wave amplitude is 
transmitted through the analyzer virtually without loss. If we turn the polarization 
vector perpendicularly to the glass plates surfaces, nearly complete attenuation of the 
shear waves in analyzer will happen. According to T.M. Proctor [1971], the amplitude 
variation of the shear waves propagating through the analyzer versus the polarization 
vector rotation angle relative to the plates orientation is close to the cosine function. 
The deviations from the regularity A = AS⋅cosj may be explained by inaccurate count 
of angles and amplitudes. The analyzer quality depends on the length of the wave 
propagation in it and on the wavelength to plates thickness ratio.  

Such a passive analyzer may be considered to be a model of the medium in which 
the effect of linear acoustic anisotropic absorption (LAAA) of shear waves is realized. 
Among natural formations there are texturized, layered media and media with a linear 
texture, in which a regular alternation of one elements, stretched in a certain direction, 
with others is observed. Such a texture is inherent to many crystalline rocks. So the 
manifestation of LAAA should be expected in rocks. The degree of its display will 
depend on the level of the texture "organization" of a rock sample, heterogeneity 
presence, acoustic contrast and its structural elements [Gorbatsevich, 1990].  

The effect of linear anisotropic absorption will, probably, be displayed in 
combination with the effect of elastic anisotropy. A joint analysis of these effects for 
low symmetry media is very complicated. Therefore below, using some particular 
cases as examples, we shall consider the LAAA display in isotropic media and its 
manifestation in combination with the effect of elastic anisotropy during the 
propagation of shear waves in the simplest transverse-isotropic medium. The results 
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of a theoretical analysis given below do not claim to be full and complete, since only 
phenomenological consequences of the phenomenon have been considered.  

For LAAA observation of most interest is the analysis of circle diagrams obtained 
when the polarization vectors are parallel (VP position). But when the LAAA and 
elastic anisotropy effects are acting jointly, one should observe the changes in the 
circle diagrams obtained with the crossed polarization vectors of the source and 
receiver (VC position).  

 
2.2. Isotropic medium 
 

Let us imagine that the medium, of which the sample analyzed has been made, is 
isotropic and exhibits the LAAA effect ideally. Such a sample acts as a linear 
polarizer and fully absorbs shear waves when their polarization vector is orthogonal to 
the greatest transmission direction (GT). On the basis of LAAA cosine function 
[Proctor, 1971], for the received waves amplitude AVP, measured at the parallel 
polarization vectors of the transducers (VP 
position), we obtain 

 

)2sin(cos 0ϕλ
πω +−=

xtjAAAА RERSVP ,      (2.1) 

 
where AS is the amplitude of waves radiated by the 
source; AR is the value of the receiver greatest 
sensitivity; ARE is the factor of analyzer 
transmission in the GT direction; j is the angle 
between the direction of polarization vectors and 
the GT direction.; ω is the waves circle frequency; 
t is time; λ is the wavelength; x is the sample 
length; ϕ0 is the initial phase shift. The circle 
diagram of the AVP value within the angle j = 2π is 
given in Fig. 2.1. 

The medium, of which the sample has been 
made, may not manifest itself as an ideal linear 
polarizer. In this case in the direction 
perpendicular to GT the receiver should register 
some amplitude ARE depending on the degree of LAAA manifestation. Taking the 
transmission factor in the direction perpendicular to GT to be equal to ARR, we obtain 
that in the direction of "the greatest transmission" the factor ARE = ARN + ARR, where 
ARN  is an additional to ARR transmission factor in the GT direction. Equation (2.1) for 
the case of non-ideal LAAA manifestation will be 

 

)2sin()cos( 0ϕλ
πω +−+=

xtAjAAAА RRRNRSVP .                         (2.2) 

 
The degree of LAAA manifestation in a sample can be expressed by the following 
index [Acoustic polarization…, 1985] 

 

Fig. 2.1. Circle diagrams of the 
amplitude variation of shear 
waves that have passed an 
isotropic medium with different 
degrees of LAAA effect 
manifestation. 1 – D = 1.0; 2 – D 
= 0.5; 3 – D = 0.25; 4 – D = 0. 
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where the value of ARE is determined when j = 0 and ARR – when j = 90o.  

According to (2.3), the sample with a full effect of LAAA has a degree of D = 1, 
with the absence of LAAA D = 0. Figure 2.1 shows the circle diagrams of the 
amplitude AVP variation (VP position) for media with different degrees of LAAA. If 
the polarization vectors of the transducers are crossed (VC position), then for an 
isotropic medium the amplitude AVC = 0 with any degree D.  
 
2.3. Transverse-isotropic medium 
 

The amplitudes of the shear waves that have passed through the sample in the 
direction of the isotropy plane (VP position), are described by Eq. (1.9) and (1.10). 
When the effects of LAAA and elastic anisotropy act jointly, with the multiplier of 
the expression (2.2), Eq. (1.9) and (1.10) become: 
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Equations (2.4) and (2.5) describe variation of harmonic amplitudes of shear 

waves that have passed the sample made of the medium exhibiting transverse-
isotropic symmetry of elastic properties and LAAA effect when, in the former case, 
the polarization vectors are parallel and, in the latter one, when they are crossed at 
90o. In the presence of the effect the envelope amplitude registered by the receiver in 
the VP position, Eq. (1.14), with the multiplier (2.2) will be equal to: 
 

.sincossincos2cos)cos( 4224 βδβββ +++= RRRNRSVPM AjAAAA   (2.6) 
 

In the VC position the envelope amplitude AVCM, Eq. (1.16), will be 
supplemented by the multiplier, 

А A A A j AVCM S R RN RR= +( cos ) sin sin .2
2

β
δ

                      (2.7) 

 
For practical analysis of the peculiarities of the joint display of LAAA and elastic 

anisotropy effects we shall follow the variation of amplitudes AVP and AVC (their 
envelopes) within the circle diagrams (β = 0 ÷ 2π) for some particular cases, that are 
characterized by certain phase ratios of waves, propagating along the axis and 
symmetry plane of the medium, and by the degree D. 
 
1. The size of an anisotropic sample, expressed in the wavelengths, is equal to: 
 

x =
−

λ λ
λ λ

1 2

1 24( )
.  
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With such a value of x the phase of the wave propagating with the polarization 

vector, oriented along the plane of elastic symmetry, is ahead of the wave phase with 
the vector oriented along the symmetry axis, by the angle δ = π/2. Taking the GT 
direction to coincide with the medium symmetry plane (angle j = β), from (2.4), for 
the signal amplitude, detected in the VP position, we obtain (D = 1) 
 

А A A A t tVP S R RE= + + +cos [cos sin( ) sin ( )]β β ω ψ β ω ψ2 2 .                      (2.8) 
 

For the signal amplitude, detected in the VC position, from (2.5) we obtain (D = 1)  
 

)]cos()[sin(2sincos
2
1 ψωψωββ +−+= ttAAAА RERSVC .                       (2.9) 

 
Similarly, from Eq. (2.6) and (2.7) the expressions for the envelopes AVP and AVC 

can be obtained. Figures 2.2.1–2.2.5 show the circle diagrams for variation of the 
envelopes of the harmonic amplitudes AVP and AVC (δ = 90°) versus the rotation angle 
with respect to the plane of the medium elastic symmetry.  

Circle diagrams for the VP position are given in a solid line, those for the VC 
position - in a dotted line. In Figure 2.2.1 the circle diagrams are given for the sample 
that does not exhibit LAAA (D = 0) [Acoustic polarization…, 1985], in Fig. 2.2.2 – 
for D = 0.25, in Fig. 2.2.3-2.2.5 – for D = 0.5 and D = 0.75, D = 1 accordingly. 

 
2. The size of an anisotropic sample, expressed in the wavelengths is equal to 
 

x =
−

λ λ
λ λ

1 2

1 22( )
.  

 
In this case δ = π. We shall maintain the condition j = δ. Equation (2.4) with δ = π 
and D = 1 will be 

 
А A A A tV P S R R E= +cos cos sin( ).β β ω ψ2                                (2.10) 

 
From (2.5) with δ  = π,   j = δ,   D = 1 we shall obtain 
 

 
А A A A tVC S R RE= +cos sin sin( ).β β ω ψ2                               (2.11) 

 
The circle diagrams for the case δ = π, j = δ, D = 0 and also for δ = π, j=δ, D = 0.25, 
D = 0.5, D = 0.75, D = 1 are given in Figs 2.2.6-2.2.10. A joint examination of the 
analysis results and Figs 2.1, 2.2 shows that for both isotropic and anisotropic media 
the circle diagrams can serve to determine the direction of the greatest and the least 
transmission as well as the degree of the LAAA manifestation. The LAAA effect is 
most conspicuous in variation of the circle diagrams envelopes, calculated for the 
transducers VP position. In the absence of the phase difference δ along the selected 
direction in the sample and with a full effect of LAAA the circle diagram in the VP 
position should be close to the function AVP = cosj. As the phase difference (from δ = 
0 to δ = π) increases the circle diagram of an anisotropic sample in the VP position 
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becomes more stretched along the GT direction, additional minima appear on it. The 
presence of LAAA leads only to some envelope distortion of the circle diagrams, 
calculated for the VC position, to the area decrease and reduction in the petals size. 
As the medium index D increases the VP circle diagram stretches along the GT 
direction.  
 
2.4. Observations of LAAA in model media 
 
To check the above stated theoretical concepts we performed model experiments 
trying to determine the impact of linear heterogeneity on the amplitude and values of 
compression and shear waves velocities. 
The measurements were made by the 
acoustopolarization determination 
methods [Gorbatsevich, 1986]. A 
cylindrical sample made of 
polymethylmethacrylate (organic glass) 
was used as a model (Fig. 2.3.A).  
Before every measurement cycle holes 2 
mm in diameter parallel to each other and 
perpendicular to bundle of ultrasonic 
waves were formed. Measurements were 
made with unfilled, hollow and filled with 
thick mineral oil holes. To a certain 
extent, in the first case the model 
represented a porous medium with 
strongly oriented fractures filled with gas 
while in the second case it represented 
also oriented but filled with mineral oil or, 
otherwise, liquid hydrocarbons fractures. 
Altogether 15 individual measurements 
were made, first in a model without holes, 
then successively in the model with 1, 2, 
3, 4, 5, 7 and 9 holes. For measurements 
standard ultrasonic apparatus was used 
[Acoustic polarization…, 1985] and 
transducers of purely shear, linear-
polarized waves with natural frequency of 
f0 = 0.47 MHz. The main measurement 
results are given in Table 2.1, the 
acoustopolarigram of the model without 
holes - in Fig. 2.3.B and 
acoustopolarigrams of the models with 
unfilled – in Fig. 2.3.1-2.3.3 and filled 
holes – in Fig. 2.3.4-2.3.6. 

The table gives the value of 
conditional porosity n calculated as the 
holes volume to the model volume ratio in relation to the holes quantity. The 
compression wave velocities Vp are presented in the table as well. The shear wave 
velocities measured with the polarization vector oriented along the holes Vs1 and 
perpendicular to them (Vs2) are given in the table too. The value of Vs2 was calculated 

Fig. 2.2. Circle diagrams for variation of the 
amplitude of shear waves propagation in 
anisotropic medium with different degrees 
of LAAA effect. 1, 6 – D = 0; 2, 7 – D = 
0.25; 3, 8 – D = 0.5; 4, 9 – D = 0.75; 5, 10 
– D = 1.0. For patterns 1-5 the phase 
difference is equal to δ = π/2, for 6-10 δ = 
π. Solid lines are for VP, dotted lines - for 
VC.  
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with regard to the phase difference δ, determined in the course of acoustopolarization 
measurements [Gorbatsevich, 1995]. In the table the ratio of the amplitude of the 
compression wave that has passed through a model with holes Api, to the amplitude 
Ap0 measured in the sample without holes is given. Similarly, the ratio of the shear 
wave amplitudes Asim/As0 was obtained, Asim being measured when the polarization 
vector of the transducers was in the plane passing through the holes axes. 

Table 2.1. 
 

Results of measuring elastic wave velocity and amplitude in models with different 
numbers of holes*).  
 

Holes filled with gas Holes filled with oil Num-
er of 
holes 

Condi-
tional 
porosity 
n, % 

Vp, 
km/s 

Vs1, 
km/s 

Vs2,  
km/s 
 

Api 
/Ар0 

Asim  
/As0 

D Vp,. 
km/s 

Vs1,  
km/s

Vs2, 
km/s

Api 
/Ap0 

Asim  
/As0 

D 
 

0 0 2.75 1.38 1.380 1.0 1.0 0.0 2.75 1.380 1.380 1.0 1 0.0 
1 1.27 2.75 1.38 1.380 0.81 0.69 0.0 2.75 1.380 1.375 0.81 0.69 0.27 
2 2.54 2.75 1.38 1.379 0.45 0.56 0.030 2.75 1.380 1.378 0.45 0.60 - 
3 3.81 2.75 1.38 1.377 0.45 0.45 0.064 2.75 1.380 1.374 0.45 0.40 0.31 
4 4.72 2.75 1.38 1.374 0.45 0.35 0.088 2.75 1.380 1.365 0.45 0.35 0.44 
5 5.63 2.73 1.38 1.374 0.38 0.39 0.091 2.73 1.380 - 0.38 0.38 0.53 
7 7.45 2.71 1.38 1.369 0.25 0.34 0.106 2.71 1.380 1.358 0.25 0.33 0.65 
9 9.27 2.71 1.38 1.361 0.25 0.24 - 2.71 1.380 - 0.25 0.28 - 

*) Measurements on the model have been made by PhD M.Z. Abdrakhimov and Eng. S.K. Belyaev. 

Linear anisotropic absorption was measured by formula (2.3) that reflects various 
absorption of shear waves at different orientation of the polarization vector relative to 
the medium structure (in this case – the holes axes). Figure 2.4 shows the dependence 
of the value D in the model with unfilled and filled with oil holes as well as the 
amplitude ratio Asim/As0 on the holes number in the model. 

As the test results (Fig. 2.3) suggest, the acoustopolarigram, obtained at the 
transducers' parallel polarization vectors, is a curve very close to a circle. This shows 
that the model initial material is elastic-isotropic [Gorbatsevich, 1986]. 

The model with holes filled with air exhibits a slight increase in elastic anisotropy 
as the number of holes or conditional porosity index n rises (Tab. 2.1, Fig. 2.4). 
Judging by the acoustopolarigrams VC distinct anisotropy is observed with 5-7 holes 
in the model. With such number of holes a slight decrease (0.8-1.5%) in the velocity 
of compression Vp and shear Vs2, waves is observed with the polarization vector 
oriented along the normal to the holes. As the number of holes increases in the path of 
the ray bundle, the amplitude of both compression Api/Ap0 and shear Asim/As0 waves 
substantially decreases.  

For instance, with 9 holes both compression and shear waves attenuate nearly 4 
times. Moreover, the degree of this attenuation does not depend on the fact whether 
the holes are filled or not (Fig. 2.3.A). Quite another picture is observed when 
analysing the variation of the shear wave amplitude with the polarization vector 
oriented along the normal to the hole axis. It is best shown in Fig. 2.3.4–2.3.6. For 
example, the acoustopolarigram obtained for the model with five filled holes, Fig. 
2.3.5, is similar to the theoretical circle diagram, Fig. 2.2.3, with D = 0.5, δ = π/2.  
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When the number of the oil-
filled holes in the model increases 
the acoustopolarigram VP flattens 
and the index D greatly increases 
(Fig. 2.4). Judging by the slope of 
the averaged straight lines the index 
D in the case with filled holes is 6 
times higher than that in the model 
with unfilled holes. The reason is 
that as shear waves with the 
displacement vector oriented along 
the normal to the holes pass, most 
of the vibrational power does not 
reflect at the hole boundary, but 
passes in the liquid and dissipates 
there.  

This conclusion is drawn from 
the fact that ultrasound velocity in 
mineral oil (Vp = 1.44 km/s) is close 
to the shear wave velocity in the 
model material (Vs = 1.38 km/s) 
with a slight difference in the 
density of oil (ρ = 0.87 g/sm3) and 
polymethylmethacrylate (ρ = 1.18 
g/sm3). If the holes or pores are not 
filled then elastic energy does not 
overcome the medium-gas 
boundary and hence is not lost. In 
this case due to diffraction a shear 
wave rounds the holes. 

On the basis of the above 
model experiments the following 
conclusion may be drawn. The 
effect of linear acoustic anisotropic 
absorption arises in media when 
linear polarized shear waves 
interact with heterogeneity oriented 
along the line or planes. Those may 
be both filled, for instance, with 
liquid and unfilled oriented fractures. The degree of LAAA greatly depends on the 
fact whether the holes are filled with liquid or they are dry. Filling the fractures, for 
instance, with liquid hydrocarbons may substantially rise the LAAA index D. The 
observation of LAAA in natural media allows one to register some forms of this 
phenomenon. 

As a whole, the LAAA effect may be represented by two basic models. One of 
them is the above Proctor's model [Proctor, 1971] or model I. In rocks this model may 
be realized in the media that have oriented cracks or plane elements (minerals), such 
as mica, talc et al. On a sample of the medium representing model I the LAAA effect 
will be observed on the sides where the butt-ends of the plane elements are exposed, 
Fig. 2.5a. In this case the "greatest transmission" directions and, accordingly, the 

Fig. 2.3. Model and acoustopolarigrams of the 
model with oriented holes.  
A – model, B - acoustopolarigrams of the model 
without holes. Acoustopolarigrams of the model 
with holes: (1), (2) and (3) – 3, 5 and 7 holes 
respectively, a filler is air; (4), (5) and (6) – 3, 5 
and 7 holes respectively, a filler is mineral oil. 
VP, solid lines; VC, dotted lines. 
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largest diameters of the VP 
acoustopolarigrams on the neighbouring sides 
will be directed to each other and pinpoint the 
arrangement of the plane elements. On the 
side parallel to the plane elements VP 
acoustoplarigrams that are close to isometric 
will be detected. The observation results (Fig. 
2.3) allow one to conclude that there is 
another, radically different from the first 
model - model II. It consists of linear 
elongated in one direction, isometric in the 
cross section elements (Fig. 2.5b).  

As follows from the Figure, on the sample 
representing the medium of model II the 
LAAA effect will be most conspicuous on the 
sides parallel to linear elements. Unlike model 
I, the directions of "the greatest transmissions" 
and, accordingly, the largest diameters of the 
VP acoustopolarigrams will be directed to the 
side perpendicular to linear elements. On this 
side the VP acoustopolarigram close to 
isometric should be obtained. As follows from 
Fig. 2.5a and 2.5b, the difference between the 
medium of model I and that of model II may 
be established only on the basis of spatial 
measurements system.  
 
 
2.5. LAAA observations on a model with an angular unconformity with elastic 
symmetry elements 

 
An arrangement of symmetry elements of elastic anisotropy and linear acoustic 

anisotropic absorption in solid bodies may not coincide since those phenomena are of 
different physical nature. With an angular unconformity between the symmetry 
elements of LAAA and elastic anisotropy formulae (2.6) and (2.7) take the following 
form: 

 
βδβββτ 4224 sincossincoscos))cos(( ++++= RRRNRSVPM AjAAAА ,  (2.12) 

 

2
sin2sin))cos(( δβτ RRRNRSVCM AjAAAА ++= ,                                       (2.13) 

 
where τ is an angle between an elastic symmetry element of the media and a 
symmetry element of the LAAA spatial figure of the solid body.  

Fig. 2.4. (a) LAA index D measured on 
the model with unfilled (1) and filled (2) 
holes. (b) Ratio Арi/Apo (3), ratio 
Asim/Aso in the model with unfilled (4) 
and filled (5) holes in relation to the 
holes number in the model. 

a 

b 
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By formulae (2.12) and (2.13) we have calculated circle diagrams of АVPM and 
АVCM amplitudes with two values of the phase difference δ = π/2, δ = π and different 
unconformity angles τ. The calculation results are given in Fig. 2.6. 

 
Fig. 2.5. Plane (a) and linear (b) models of LAA display. VP, solid lines; VS, dotted lines. 

 
As follows from the diagrams, with the angular unconformity 0<τ<45o АVPM 

diagrams become asymmetric both with δ = π/2 and δ = π. These diagrams become 
symmetric with τ = 0, 45o + nπ/4, where n = 0, 1, 2, 3…. Such a peculiarity of the VP 
diagrams may serve as a diagnostic sign for the presence of the angular unconformity 
between the elastic symmetry element of the media and the symmetry element of the 
LAAA spatial figure of the solid body. With this unconformity the variations in the 
АVCM diagrams obtained at crossed polarization vectors are all the more conspicuous. 
The petals of these diagrams become unequal in size and area and with τ = 45o a four-
petal figure becomes two-petal. With the phase difference δ = π and 65o > τ > 25o an 
intriguing phenomenon is observed - in a certain angle range the amplitude with the 
crossed polarization vectors becomes larger than that with the parallel ones (АVCM > 
АVPM). These signs are determining at the angular unconformity diagnosis.  

Besides the calculations, we have taken model measurements of the mutual 
influence the mentioned effects exert on the acoustopolarigram shape [Gorbatsevich 
& Il'chenko, 1997]. The model prepared for measurements was made of two plates 
(Fig. 2.7). One of the plates was made of piezoelectric ceramics of PZT type. The 
material of this plate is an anisotropic medium of transverse-isotropic symmetry type. 
The plate was sawn in such a way that its surfaces were parallel to the elastic 
symmetry axis of the ceramics. It was 4.25 mm thick. The second plate was made of 
wood with regular foliation, since it has a strong LAAA effect [Gorbatsevich, 1999]. 
The wooden plate of 2.25 mm thickness was sawn in such a way that the direction of 
its fibres coincides with the symmetry axis along elongation. Acoustopolarigrams for 
the ceramic and wooden plates are presented in Fig. 2.7. The measurements were 
taken at the basic frequency f0 = 1.12 MHz. The phase shift along the axis and the 
symmetry plane in the ceramic plate is 88o and in the wooden plate - 56o.  

Before the measurements on the model the position of the plates relative to each 
other was rigidly fixed with a special clamp. Then the fastened plates were placed on 
the rotating platform of the acoustopolariscope [Gorbatsevich, 1995]. The acoustic 
contact between the plates was performed with a high-viscous solution of non-
crystallized polysaccharides [Acoustic polarization….1985]. In the sequence of 
measurements the pulse amplitude of the passing waves in the rotation angle range of 
0-360o with a step of 10o was fixed. The amplitude measurements were conducted 

a b 
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both at crossed (VC) and parallel (VP) polarization vectors. In a sequence of 
measurements the mutual orientation of the model plates was successively changed. 
At first the angle between the plates was 0o..Then the angle between the plate axes 
was changed to 15o..After that the mutual angle was increased by further 15o. Thus, a 
set of acoustopolarization measurements was performed with the angles between the 
model symmetry elements of 0, 15, 30, 45, 60, 75 and 90o.  

By the VP acoustopolarigram we 
determined the degree of LAAA manifestation 
D and by the VP and VC acoustopolarigrams - 
angles α1, α2 and α3. The angle α was 
determined between the reference axis 0o and a 
strait line passing through the model rotation 
axis and opposing amplitude maxima of the VP 
acoustopolarigram (petal tops of a larger pair). 
The angles α2 and α3 were determined between 
the reference axis 0o and strait lines passing 
through the opposite minima of the VC 
acoustopolarigram. At every measurement 
stage the change in the size and shape of the 
acoustopolarigram petals was detected. The 
measurement results are given in Fig. 2.7 and 
Table 2.2. 

When the angle τ between the elastic 
symmetry elements is 0o, Fig. 2.7.a, the 
summary acoustopolarigram presents a 
combination of acoustopolarigrams, Fig. 2.7.2 
and 2.7.3, and the model presents a transverse-
isotropic medium with a high LAAA 
manifestation. An estimation of its degree by 
formula (2.3) gives D = 0.53, angles α1 = 0o, α2 

= 0o, α3 = 90o, Table 2.2.  
When the plates rotate relative each other 

through τ = 15o the LAAA degree increases to D = 0.58 (Fig. 2.7b). The VC 
acoustopolarigrams petals become asymmetric. For instance, the petals located in 
quarters I-III of the circle became twice larger and wider and those from quarters II-
IV became slightly longer, by some 10%. Judging by the angle α1 the VP 
acoustopolarigram has rotated relative to the reference axis by about 10o. The angles 
marking the position of the elastic symmetry elements are α2 = 0o, α3 = 114o. 

When rotated through τ = 30o the LAAA index changed to the value of D = 0.37 
(Fig. 2.7c). The rotation angles of the acoustopolarigrams symmetry elements were α1 

= 15o, α2 = 0o, α3 = 130o. When rotated through τ = 45o the LAAA degree increased to 
D = 0.52 (Fig. 2.7d). The VP and VC acoustopolarigrams took near-two-petal shape. 
In this case it was possible to measure only two angles - α1 = 0o and α2 = 0o. A great 
increase in the amplitude of the waves detected at the VC position is observed. This 
amplitude markedly exceeds the amplitude of the waves detected in the VP position.  

The observations performed at τ > 45o show that the resultant acoustopolarigrams 
are mirror images of the previous ones. The discrepancy between the 
acoustopolarigrams obtained at τ = 15o and τ = 75o, τ = 30o and τ = 60o, are likely to 
be caused by inaccurate setting of the angle between the model plates and unstable 

Fig. 2.6. Circle diagrams of AVPM 
amplitudes for two values of the 
phase difference δ = π/2 (1-4), δ = π 
(5-8) and different discordance 
angles τ = 0o (1, 5), 15o (2, 6), 300 (3, 
7), 45o (4, 8). The angle count is 
performed from the elastic symmetry 
element of the media, the LAAA 
symmetry element is displaced by an 
angle τ. VP - solid lines; VC - dotted 
lines.
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contact conditions. If the values of D, α1, 
α2 and α3 are similar, the 
acoustopolarigrams at τ = 90o, on the 
whole, are close to the acoustopolarigrams 
outlines at τ = 0o.  

Analysing the data from Fig. 2.7 and 
Table 2.2 it should be noted that increasing 
the angle between the model plates, a 
slight rotation of the acoustopolarigram 
symmetry axis (its largest diameter) at the 
VP position occurs. From τ = 0 to τ = 45o 
this rotation takes place in the same 
direction as the rotation of one of the 
model plates. But at τ > 45o this rotation 
occurs in the opposite direction.  

When the angle τ is changed the 
LAAA degree does not vary greatly. 
Judging by the constant value of the angle 
α2 = 0o, the elastic symmetry element 
singled out on the VC acoustopolarigrams 
and corresponding to the symmetry 
element of the wooden plate remains 
unchanged. It can be easily explained by 
the fact that in a sequence of 
measurements the ceramic plate changed 
its position, while the wooden plate 
remained in place regarding the 
acoustopolariscopy reference scale.  

The elastic symmetry second element 
corresponding to the symmetry element of 
the ceramic plate is adequately reflected 
on the VC acoustopolarigrams only at low 
rotation angles τ. At τ ~ 20o and higher the 
real position of the symmetry elements of 
the ceramic plate cannot be determined by 
the VC diagrams minima. This aspect 
should be taken into consideration in the 
presence of an angular unconformity 
between the symmetry elements of LAAA and elastic anisotropy.  

Thus, both theoretical calculations and model tests revealed that the most 
characteristic sign for the presence of an angular discrepancy between the symmetry 
elements of LAAA and elastic anisotropy is inequality of the petals size and area in 
the VC acoustopolarigram. In this case the largest diameter of the VC 
acoustopolarigram may be greater than that of the VP acoustopolarigram. 

A theoretical analysis and observations on the joint display of elastic anisotropy 
and the LAA effect on model media allow one to draw the following conclusions: 
1. The acoustopolarigrams for the samples of the media exhibiting the linear acoustic 

anisotropic absorption (LAAA) effect enable determining the direction of the 
greatest and least "transmission" of shear waves and the LAAA manifestation 

Fig. 2.7. Sketch model and acousto-
polarigrams obtained at different angles 
between the symmetry elements of the 
ceramic and wooden plates. 
1 - sketch model, - the upper plate is 
ceramic, the lower – wooden. 2 - 
acoustopolarigrams for the ceramic plate. 
3 - acoustopolarigrams for the wooden 
plate. Acoustopolarigrams for the model 
with angles τ between the symmetry 
elements of the plates, accordingly: а – 
0o, b – 15o, c – 30o, d – 45o, e – 60o, f – 
75o, g – 90o. The angle count is 
performed from the LAAA symmetry 
element of the wooden plate, the elastic 
symmetry element is displaced by the 
angle τ. VP - solid line; VC - dotted line. 
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degree. 
Table 2.2. 

Angles measured on the acoustopolarigrams of the model made 
of ceramic and wooden plates**). 

 
Angles between the 
symmetry elements of 
the model plates τ, 
grad 
 

 
 
0 

 
 
15 

 
 
30 

 
 
45 

 
 
60 

 
 
75 

 
 
90 

α1, 
grad 

0 10 15 0 160 165 0 Rotation 
angles of the 
acoustopolari-
grams 
symmetry 
elements 

α2, 
grad 

90 114 130 0 65 78 90 

LAAA degree 
D 

0.53 0.58 0.37 0.52 0.49 0.53 0.49 

 
Notes: angle α2 = 0 for all the values of angles α1 and α3.  

                            **)The measurements have been made by PhD V.L. Ilchenko 
 

2. The influence of the LAAA effect is most conspicuous in the change of the shape 
of the acoustopolarigrams obtained in the VP position of the source and receiver. 
As the phase difference increases in the range of 0-π the VP acoustopolarigram of 
anisotropic type becomes more elongated, additional minima appear on it.  

3. The LAAA effect brings only a slight distortion of the shape of the 
acoustopolarigrams obtained in the VC position. 

4. Two main types of the LAAA display have been identified - plane and linear. 
With plane type of LAAA the acoustopolarigrams largest diameters are oriented 
to the opposite sides of the cubic sample. With the linear type of LAAA the 
acoustopolarigrams largest diameters are oriented to the same side.  

5. The spatial orientations of elastic symmetry elements and structural elements that 
cause the LAAA effect do not always coincide. When they coincide the shape and 
size of petals of the acoustopolarigrams obtained at crossed polarization vectors 
are identical.  

6. The most characteristic feature of the angular divergence between the symmetry 
elements of LAAA and elastic anisotropy is inequality of the petals size and area 
of the VC acoustopolarigram. The largest diameter (maximum amplitude) of the 
VC acoustopolarigram may be larger than that of the VP acoustopolarigram. 
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3. DEPOLARIZATION OF SHEAR WAVES IN ANISOTROPIC 
HETEROGENEOUS MEDIA 
 

As indicated above, the effect of linear acoustic anisotropic absorption (LAAA) 
manifests itself in the media containing plane or linear elements. Another effect 
observed in propagating seismic waves through geological media is associated with a 
change in the degree of polarization of shear oscillation trains. Such a change is 
accompanied by a buildup in the ellipticity of shear oscillations or by their 
depolarization. Following Aleksandrov [1997], the polarization phenomenon is 
accounted for by the scattering of shear waves from small- and large-scale 
inhomogeneities. His conclusions were corroborated by Crampin's experiments on 
inhomogeneous cracked media [Crampin, 1985]. A different interpretation of the 
polarization phenomenon was proposed by Obolentseva [1992]. According to her 
theory, depolarization occurs in some solids due to their gyrotropic or acoustical 
activity. When a shear wave propagates in such media, its polarization vector rotates 
through an angle proportional to the distance travelled. 

To our opinion, the polarization effect is also appreciably manifested as shear 
waves propagate in a medium consisting, for example, of differently oriented elastic 
anisotropic layers. This paper describes some theoretical aspects of the shear wave 
depolarization (SWD) effect, modeling results, and determinations of the effect in 
crystalline rock samples. The obtained results show that the SWD effect is rather 
frequently observed in anisotropic crystalline rocks composed of grains whose elastic 
symmetry is sufficiently maintained, for example, in two directions. 
 
3.1. Theoretical aspects of SWD 

 
We consider the problem on the propagation and detection of shear waves in a 

transversely isotropic medium composed of two parts (I and II), whose lengths in the 
wave direction are xI and x2 respectively (Fig. 3.1). In part I, the medium symmetry 
axis is oriented in the direction [100], and the symmetry plane in the direction [010]-
[010']. In part II, the symmetry axis runs along the direction [100"] and the symmetry 
plane passes through the direction [010"]-[010'"]. The symmetry axis and plane of 
part II form an angle α to the symmetry axis and plane of part I. These parts make 
contact with each other (maintaining the acoustical contact) along planes [l00']-[0l0'] 
and [l00']-[0l0"]. A linearly polarized harmonic shear oscillation АS = Asin(ωt + ϕ0) is 
applied in plane [100]-[010] of part I, in the direction OK, at an angle β to direction 
[010]. The vector AS has the component B = Asinβ sin(ωt + ϕ0) in direction [100] and 
the component C = Аcosβ sin(ωt + ϕ0) in direction [010]. Once the shear oscillations 
in part I have run distance x1 the component B in direction [100'] becomes equal to 
[Gorbatsevich, 1982] 

 
( )B A t x' sin sin /= − +β ω π λ ϕ2 1 11 0 ,                                     (3.1)  

 
and in direction [010'] 
 

( )C A t x' cos sin /= − +β ω π λ ϕ2 1 12 0 ,                                    (3.2) 
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where λ11, λ12 are the wavelengths with the polarization vectors oriented along the 
symmetry axis and symmetry plane, respectively. 

Fig. 3.1. Sketch of detecting the amplitude of a shear wave passing through parts I and II of 
the sample. The elastic symmetry elements form an angle α to each other. 
 

In the acoustical contact of parts I and II, vectors B’ and C’ produce the 
displacements along direction [100"] 
 

B A Z r Z rB B CB' ' ( cos sin sin sin cos sin )= ⋅ −α β α β11 12 ,              (3.3)  

and along direction [010"] 

 
C A Z r Z rBC CC' ' ( sin sin sin cos cos sin )= ⋅ +α β α β11 12 ,               (3.4)  

 
where ZBB, ZCB, ZBC   and ZCC  are the coefficients of shear wave passage, depending 
on the ratio between the velocities of waves in the contact along directions B', C', В'' 
and С'' and on the densities of the parts of medium ρ1 and ρ2; 
r t x11 1 11 02= − +ω π λ ϕ/ ,   r t x12 1 12 02= − +ω π λ ϕ/ .     

When the oscillations have propagated over distance x2 in part II, components B" 
and C" take new values. The component of displacement along axis [100"'] is  
 

B A Z t x x
Z t x x

BB

BC

' ' ' [ cos sin sin( / / )
sin cos sin( / / )]

= ⋅ − − + −
− − − +

α β ω π λ π λ ϕ
α β ω π λ π λ ϕ

2 2
2 2

1 11 2 21 0

1 12 2 22 0

,      (3.5)  

 
and along axis [010"'] 
 

C A Z t x x
Z t x x

BC

CC

' ' ' [ sin sin sin( / / )
cos cos sin( / / )]

= ⋅ − − + +
+ − − +

α β ω π λ π λ ϕ
α β ω π λ π λ ϕ

2 2
2 2

1 11 2 21 0

1 12 2 22 0

,      (3.6) 

where λ21, λ22 are the lengths of the waves whose polarization vectors are oriented in 
the direction of the symmetry axis [100"]-[100'"] and symmetry plane [010"]-[010'"], 
respectively. 
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Assume that the receiver of oscillations is in contact with plane [100"']-[010'"] 
and possesses the highest sensitivity Аn in the direction parallel to line OK, i.e., to the 
displacement vector of the medium in the source plane — the position when the 
vectors are parallel (VP). 

In this case, considering equations (3.1)-(3.6), the amplitude produced in the 
receiver is 

A AA Z r Z r
Z r Z r

VP n BB CB

BC CC

= − − +
+ − +

[sin( )( cos sin sin sin cos sin )
cos( )( sin sin sin cos cos sin )]

β α α β α β
β α α β α β

1121 1222

1121 1222

. (3.7)  

 
For the case when the maximum sensitivity of the receiver is in the direction n-m 

coinciding with the normal to line OK — the position when the vectors are crossed 
(VC) we have 

 
A AA Z r Z r

Z r Z r
VC n BB CB

BC CC

= − − −
− − +

[cos( )( cos sin sin sin cos sin )
sin( )( sin sin sin cos cos sin )]

β α α β α β
β α α β α β

1121 1222

1121 1222

,    (3.8)  

where 
r t x x1121 1 11 2 21 02 2= − − +ω π λ π λ ϕ/ / , r t x x1222 1 12 2 22 02 2= − − +ω π λ π λ ϕ/ / . 

Both amplitudes АVP and АVC depend on the ratios between the wavelengths λ11, 
λ12, λ21, λ22 in each part of the medium, as well as on the distances x1 and x2, the 
densities ρ1  and ρ2, the indicatrix of wave velocity, the oscillation frequency, and the 
angles α and β. 

In view of a large number of variables, formulas (3.7) and (3.8) are fairly 
complicated for a direct analysis. Therefore, we consider the case when a composite 
sample (Fig. 3.1) consists of two equal-length parts made of the same material. The 
arrangement of their symmetry elements is shown in Fig. 3.1. Thus, for the composite 
sample, we have х1 = х2 = х; λ11 =  λ21 = λ1; λ12 = λ22 = λ2; and ρ1 = ρ2 = ρ. 
Assuming that the anisotropy of shear waves is weak and setting ρ1 = ρ2, the 
transmission coefficients are approximately equal to one, Z Z Z ZBB CB BC CC≈ ≈ ≈ ≈1. 
Then, for the amplitudes АVP and АVC  we obtain the expressions 
 

A AA r r
r r

VP n= − − +
+ − +

[sin( )(cos sin sin sin cos sin )
cos( )(sin sin sin cos cos sin )]

β α α β α β
β α α β α β

1111 2222

1111 2222

 ,       (3.9)  

 
A AA r r

r r
VC n= − − −

− − +
[cos( )(cos sin sin sin cos sin )

sin( )(sin sin sin cos cos sin )]
β α α β α β

β α α β α β
1111 2222

1111 2222

 ,     (3.10)  

where r t x1111 1 04= − +ω π λ ϕ/ ,   r t x2222 2 04= − +ω π λ ϕ/ .   
Formulas (3.9) and (3.10) help to explain the features of shear waves propagating 

in a medium that consists, for example, of layers with the same thickness and 
properties, in which, however, the elastic symmetry elements are oriented in an 
arbitrary way. The specific case of such analysis, described below, uses the measured 
amplitude of shear waves in a model composed of two identical anisotropic plates. 
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3.2. Modeling of shear wave propagation in anisotropic plates 
 

The acoustical polarization method was used to measure the amplitude of shear 
waves passing through two anisotropic plates [Acoustic polarization…, 1985]. The 
model prepared for measuring consisted of two anisotropic plates of uniform 
thickness, composed of the same elastically anisotropic ceramic material (PZT-19). 
The elastic symmetry plane is perpendicular to the plane of the plates with a thickness 
of 4.2 mm. The longitudinal wave velocity is Vp = 3.51 km/s, and the shear wave 
velocities are Vs1 = 1.72 km/s 
and Vs2 == 1.89 km/s for the 
polarization vectors 
perpendicular and parallel to 
the symmetry plane, 
respectively. The 
measurement frequency is f0 = 
1.12 MHz and the 
wavelengths are λ1 == 1.54 
mm and λ2 = 1.69 mm. The 
difference in phase between 
the shear oscillations 
propagating normally and 
parallel to the symmetry 
plane, over a distance equal to 
the thickness of one plate, is δ 
= 88.4°. 

In the course of 
measuring, the plates were 
superimposed on one another 
and placed on the platform of 
the acoustical polariscope 
[Patent No. 1281993], 
between the source and 
receiver of linearly polarized, 
purely shear ultrasonic 
oscillations, in a way that the 
cylindrical beam of rays passed through both of them. The relative position of the 
symmetry elements of the plates was fixed by a clamp (Fig. 3.2A). The first 
measurement of AVP and AVS was made for an angle of α = 0o between the plate 
symmetry elements. The obtained VP and VC polarization diagrams are shown in Fig. 
3.2B (α = 0o).  

Then, similar diagrams were obtained for α = 15°, 30°, 45°, 60°, 75°, and 90° 
(Fig. 3.2B). The VP diagrams show a gradual change-over from a four-petal pattern to 
a figure more and more resembling a circle, as the angle α increases. The diagram for 
α = 90° almost coincides with that of an isotropic medium (Fig. 1.4). While 
increasing α the VC diagrams exhibit a pronounced feature. Specifically, the 
minimum amplitudes АVCMIN  at the points through which the elastic symmetry 
elements pass (α  = 0°) are most likely caused by an imperfection of the shear wave 
converters, i.e., by the energy fraction that is detected in the so-called "dark field". At 
these points, АVCMIN amounts to 0.126-0.141 of the maximum amplitude. However, as 

Fig. 3.2. (A) Arrangement of the plates on the 
acoustical polariscope platform and (B) acoustical 
polarization diagrams obtained for different angles α 
between the elastic symmetry elements of the plates. 
Solid and dashed lines are for the parallel and crossed 
polarization vectors, respectively. 
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α increases, АVCMIN  grows reaching the maximum at α = 45-60°. The further increase 
in α > 60o results in a decrease of АVCMIN which, for α = 90°, reaches the values of 
0.1-0.126, which are close to those observed for α = 0o. 

Figure 3.3 presents the measured 
dependence of АVCMIN versus α; the averaged 
results of measurements are shown by the 
dashed line. 

Thus, the shape and relative sizes of 
acoustical polarization diagrams, particularly 
of the АVCMIN  diagram, obtained for the 
crossed polarization vectors, may indicate, for 
example, the degree of disorientation of elastic 
symmetry elements in the crystalline grains of 
both polycrystalline and polymineral rocks. 

It is necessary to note that the SWD effect 
manifests itself on the background of the usual 
change in the degree of ellipticity of shear 
waves while propagating in anisotropic media [Lyamov, 1983]. Consequently, the 
method used to detect the effect must not be sensitive to such a change. One such 
method is provided by the acoustical polariscopy. The SWD effect will manifest itself 
in the following conditions. 

1. If the elastic symmetry elements in layers or grains composing the 
anisotropic medium are relatively disoriented within an angle range of 10-
80o, the propagation of linearly polarized shear waves in the directions 
close to the normal to the disorientation plane is accompanied by their 
depolarization, i.e., by their greater ellipticity. This phenomenon, called 
the effect of shear wave depolarization (SWD), is mostly manifested in 
the case when the elastic disorientation angle in grains (layers) is close to 
45°.  

2. The SWD effect can be found in acoustical polarization diagrams for 
multicomponent media in the case when the polarization vectors are 
crossed and the minimum amplitudes AVC are appreciably higher than 
those detected by the acoustical polariscope without a sample, at the same 
points of the polarization diagram. The SWD effect allows us to estimate 
the elastic disorientation angle in grains (layers) of mono- and 
polymineral rocks. 

3. Unlike a similar phenomenon observed in inhomogeneous media 
transmitting shear waves, the SWD effect is detected only in one or two 
directions in anisotropic media whose structure is characterized by 
different-oriented elastic symmetry elements. 

4. Based on the analysis of the data on shear wave propagation, obtained, for 
example, by using the acoustical polariscopy technique, an anisotropic 
heterogeneous medium actually consisting of mutually orthogonal elastic 
layers (grains) can, in contrast, be identified as an isotropic one. 

 

Fig. 3.3. Measured amplitudes AVCMIN  
VERSUS the angle α. Dashes show 
the averaged variation in VCMIN' 
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4. EQUIPMENT FOR ACOUSTOPOLARIZATION MEASUREMENTS 

 
4.1. Peculiarities of measuring elastic wave velocities in anisotropic media 

 
When choosing a method and devices for measuring elastic wave velocities in the 

samples of greatly absorbing anisotropic media of great importance are geometrical, 
wave and energy conditions of wave propagation. First of all let us briefly consider 
geometrical conditions of energy transfer from transducer-source to a medium. 
Generally vibratory energy can be transferred by a point, linear and flat source 
radiating along a surface (in a particular case – along a plane). As follows from 
[Brekhovskikh, 1973; Skuchik, 1976], a wave amplitude from the point source 
decreases with distance due to geometric divergence of the power on the wave-front 
(generally – spherical, ellipse-shaped or a more complicated surface), as well as due 
to absorption and diffusion.  

With the spherical front, due to the geometric divergence, the amplitude of the 
wave Ax increases inversely with the distance [Skuchik, 1976]  
 

A A
x

ex
xs= −0 α ,                                  (4.1) 

 
where A0 is the initial amplitude, x is distance to the source, αs is the factor of 
absorption and diffusion in the spherical wave.  

An idealized linear source of an infinite length excites a wave with a cylinder-
shaped front. A the distance x increases the wave amplitude decreases proportionally 
to x1 : 
 

A A
x

ex
xc= −0 α ,                                                         (4.2) 

 
where αc is the factor of absorption and diffusion in the cylindrical wave. 

If the source is flat (or, to be more exact, local-flat, according to G.I. Petrashen, 
[1980]), then as the distance increases there are no losses due to divergence. Thus, the 
flat source, unlike the point and linear ones, decreases the losses of the wave energy 
as the front propagates in an elastic medium. Such a source is the most suitable for 
measuring parameters of greatly absorbing heterogeneous media. Such media are, for 
instance, rocks. 

But besides the mechanisms of divergence, diffusion and absorption elastic 
anisotropy of the sample media greatly influences the wave propagation. As practice 
shows, anisotropy of elastic properties is typical of minerals, it is also registered in 
volcanic, metamorphic and sedimentary rocks [Nevsky, 1974; Chesnokov, 1977]. 
Determination of elastic wave velocities in anisotropic rocks has its own peculiarities.  

Solving this problem requires examination of specific distinctions between phase 
Vi and radial (group) vi velocities, as well as particular conditions of exciting and 
reception of waves [Petrashen', 1980]. The distinctions between Vi and vi are most 
conspicuous on the diagrams (Fig. 4.1a, b). 

The radial velocity vi of disturbance is calculated according to the ray, for 
instance, OM1 – for quasi-longitudinal qPV (i = 1), OM2 for quasi-shear qSV (i = 2) 
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and OM3 for the wave qSH (i = 3). The rays OM1, OM2 and OM3 are the directions of 
wave energy propagation. The phase velocity Vi (i=1, 2, 3) characterizes the travel 
velocity of extended sections of the wave 
fronts in the normals direction to them. It is 
precisely the phase velocity Vi value that enters 
into the known Green-Christoffel equation 
(1.1) that allows one to calculate all the 
elasticity constants of an anisotropic medium. 

In isotropic media one can observe an 
equality of the radial and phase velocities in 
any direction. In anisotropic media such an 
equality is observed only in some particular 
directions coinciding with the direction of 
elastic symmetry elements. In an isotropic 
medium the curves for radial velocities vi (i = 
1, 2, 3), Fig. 4.1a and 4.1b, are regular circles, 
the circles i =2 and i =3 being superimposed. 

In anisotropic media the relationship 
between Vi and vi is always observed 
[Dieulesaint et Royer, 1974] 
 

1)(1
=i

i

vn
V

r .                             (4.3) 

 
This relationship means that the phase velocity 
Vi of the front (its element) is the projection of 
the radial velocity on the normal direction to 
the front nr . 

Let us consider in greater detail 
propagation of waves in an arbitrary 
weakly anisotropic medium, Fig. 4.2. 

From the point source O at the 
time point t along the ray OM'M" the 
waves will reach the point M'. At the 
time point t + Δt the waves will reach 
the point M". The ray OM'M" is 
directed to the symmetry element OZ 
of the medium at φ angle. It is not 
difficult to show that in a 
homogeneous medium the spatial 
direction of the normal nr  to the wave 
front at the points M' and M" at the 
time points t and t + Δt will be the 
same. The angle between the normal 
nr  and symmetry element OZ is equal 
to θ. From point M' to point M" along 
the ray OM'M" the waves pass the 
distance of viΔt during Δt time with the radial velocity vi. During the same time the 
wave front will pass the distance ViΔt with the phase velocity Vi.  

Fig. 4.1. Typical curves of the radial 
velocities nV i

r
 front for waves i = 1, i 

= 2 (a), for the wave i = 3 (b), 
propagating in transverse-isotropic 
medium. 

Fig. 4.2. Propagation of elastic waves in a 
homogeneous weakly anisotropic medium of 
an arbitrary symmetry type.  
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Judging by the relative displacement of the points M' and M" (Fig. 4.2) with the 
point source of waves in an anisotropic medium, as the waves propagate, in a general 
case, a lateral displacement of points occurs. Accordingly, as the distance ViΔt 
increases, the point, at which the maximum amplitude (maximum energy) will be 
registered, moves farther and farther from the normal nr , passing through the point O. 
Thus, when using point sources and receivers for measuring the phase velocity values 
of the wave front, one should observe at the points M', M'' etc. But the distance 
covered by the waves should be counted from the normal nr  making an angle θ  with 
the axis of the medium symmetry OZ. Practical performing of such operations is 
rather labour-intensive. 

Now let us consider 
the propagation 
peculiarities of radial and 
phase fronts from plane 
sources. A plane (locally 
plane) source of waves 
may be imagined as a set 
of point sources arranged 
in the plane and oscillating 
synchronously, Fig. 4.3. 

According to the 
Huygens principle, a wave 
front is a family of 
envelopes, in which the 
normal to extreme points 
is the normal to the plane, 
where the sources are 
placed. As follows from 
Fig. 4.3 the position of the 
normal to the front is preserved at the moments Δt, Δt', Δt'' and any others. As in Fig 
4.2 with the point source, Fig. 4.3 shows that the normal nr  in relation to the 
symmetry element OZ preserves the angle θ, which does not change its value as a 
wave front propagates. 

If point sources are located in one plane close to each other (a plane source), then, 
excluding edge areas, the emitted front will be plane. The element ds of such a front 
moves along the vector iν

r , remaining parallel to itself, Fig. 4.4. 
From this Figure it follows that over the time Δt the front element ds passes along 

the vector iν
r  from the 

source to the receiver with 
the radial velocity vi and at 
the same time along the 
ort nr  with the phase 
velocity Vi. The 
considered peculiarities of 
elastic wave propagation 
from point and plain 
sources can be observed 
during propagation of both 

Fig. 4.3. Family of envelopes that, according to the 
Huygens principle, are a front of waves from point sources 
lying in one plane. 

Fig. 4.4. Propagation of the reference element ds of the 
expanded plane front in an anisotropic medium. 
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quasi-compressional and quasi-shear waves at any direction of their polarization 
vectors. 

Figures 4.3 and 4.4 and the relation (4.3) allow one to draw conclusions that are 
necessary for proper practical measurements: 
1. The time of wave propagation corresponding to the value of phase velocity Vi is 
measured independently of the element and symmetry type of an anisotropic medium 
in samples bounded by plane-parallel surfaces with the help of plane (local-plane) 
sources and receivers of waves.  
2. If we define the orientation of a medium symmetry elements, for instance, with the 
acoustopolarization method [Gorbatsevich, 1995], then the angle θ  will be equal to 
the angle between the normal to the plane-parallel surfaces bounding the sample and 
orientation of a symmetry element. 

Besides these condition it is necessary to provide even distribution of amplitudes 
(pressures) in the cross-section of the bundle of rays (within the local-plane front) 
passing from the source to the sample [Skuchik, 1976]. For example, in the near zone 
(Fresnel zone) the amplitude of waves from a plane source (made in the form of a 
disk) in the cross section (in relation to the axis of the radiated bundle) varies in a 
complicated manner. Within this zone a great variation of the registered wave 
amplitude is observed. The far zone (Fraunhofer zone) begins at a certain distance of 
the front from the source. At this point the amplitude distribution along the radiating 
surface becomes monotonous. A transition from the near to far zone occurs when the 
following condition is met [Tyulin, 1976], 

 
x
R

R
> −
λ

λ
4

,                                                                  (4.4) 

 
where x is a distance from the plane source, R is a radius of its radiating surface, λ is a 
wave length. 

Thus, to provide even distribution of the amplitude within the cross section of the 
bundle of radiated waves it is necessary to use buffer rods (acoustic lines) whose 
length should be determined by the condition (4.4). Long acoustic lines also promote 
increasing the area of the local plane front. They are often used for increasing the 
accuracy of measurements [MacSkimin, 1950]. 

In conclusion we shall point out one more important and evident requirement: 
when measuring elastic characteristics of such heterogeneous and anisotropic media 
as rocks, the propagation ways of the ray bundles of compression and shear waves 
should coincide. Herewith it is very important to provide coincidence of contact 
conditions as well [Gorbatsevich, 1995]. 

The above analysis allows one to formulate general requirements for 
measurement equipment. Meeting these requirements ensures correct and exact 
measurement of phase velocities of compression and shear waves: 

1. Ultrasound sources and receivers (transducers) should be plane (locally plane). 
2. A radiating transducer should form a non-divergent or weakly divergent beam 

of ultrasonic waves. 
3. To increase accuracy in the measurements it is necessary to use buffer rods 

(acoustic lines) which size is larger than Fresnel zone. 
4. Oscillations in the ultrasonic wave impulses should be monofrequency ones, 

their frequency should be the same for compression and shear waves. 
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5. The propagation way of the ray bundle of compression and shear waves 
should be the same. Contact conditions on the sample-transducer boundary 
should be identical, too. 

 
4.2. Requirements for devices and materials 
 

To conduct acoustopolarization determinations and measurements of 
compression wave velocities in anisotropic samples one may use impulse ultrasonic 
devices (defectoscopes) for example of Krauthkramer type etc. with oscillographical – 
on the electron-beam tube (EBT) and digital indication of results. The repetition 
frequency of outgoing pulses should be higher than 25 Hz, while the amplification 
factor – no less than 1⋅105. A step control of the input signal in 1 dB within 0–60 dB 
is also necessary. The device band pass may vary within 0.4–10.0 MHz. The 
determination accuracy of the travel time of an ultrasonic pulse should be no less than 
1⋅10-7–1⋅10-8 s and the scanning time - within (10-200)⋅10-6 s. 

The mentioned accuracy of the time 
determination can be attained by the circuit, in 
which a frequency meter, used in the regime of 
time interval counting, is connected to an 
ultrasonic defectoscope. In this case the pulse from 
the pulse generator is applied to the frequency 
meter input and starts time counting, while the 
pulse from the ultrasound waves receiver, 
amplified by the device amplifier (or strobe pulse), 
is used to stop the frequency meter counting.  

For acoustopolarization determinations and 
velocity measurements transducers radiating 
intensive linear-polarized pure shear waves are 
needed [Bergman, 1954]. The transducers whose 
design is given in [Gorbatsevich, 1995] meet these 
requirements. The most efficient is the transducer, 
which acoustic line consists of two parts (Fig. 4.5). 

The basic frequency of transducer waves is 
determined by the piezoplate natural frequency and 
may make up f0 = 0.4-10.0 MHz. For 
determinations it is necessary to have two pairs of 
shear wave transducers, one, for instance, with 
natural frequency of 0.7 MHz, the other – 1.1 
MHz. On the transducer case the direction mark of polarization vector (PV) should 
be. 

The shear wave transducers prepared for measurements should be subjected to 
check-up. For this purpose two similarly designed transducers rated at one and the 
same natural frequency are connected together at their working surfaces by a special 
contact medium. The PV mark of the source is made coincident with the PV mark of 
the receiver. The shear wave pulse originated on the EBT screen should consist of 6-
10 individual periods (Fig. 4.6).  

The waves in the pulse should be monofrequency ones, close to harmonic; they 
should not be distorted by bends. The check is performed in the following order: 

Fig. 4.5. Transducer of shear 
waves with the converter of 
compessional waves into shear 
waves [Patent No. 785737, 
USSR]. 
1 – piezoplate; 2 - acoustic line 
first part; 3 – acoustic line 
second part.  
P, S – rays of compression and 
shear waves, accordingly. 
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1. One measures the amplitude APM of the pulse located along the sweep trace in front 
of the shear wave pulse and the factor AVPM1 (Fig. 4.6). The pulse ratio should follow 
the inequality APM/AVPM ≤ 0.1.  
2. One of the transducers is turned by an angle 
of +90° from the PV position of the other 
transducer and the signal AVCM1 minimum is 
fixed. Then the same transducer is turned by an 
angle of -90° from the PV position of the other 
one and the pulse AVCM2 amplitude is fixed. The 
measured values should be in the ratio 
AVCM1/AVPM ≤ 0.15, AVCM2/AVPM ≤ 0,15 and 
differ from one another by no more than 10%. 
3. One of the transducers is turned by an angle 
of 180° from the PV position of the other one. 
The measured amplitude AVPM2 of the pulse 
envelope should differ from the AVPM by no more than 10%.  

Even more qualitative check of the transducers pair may be performed if we plot 
the indicatrix of their polarization vectors (Fig. 4.7). If the transducers radiate linear-
polarized purely shear waves, then the indicatrix points should lie on the regular circle 
line [Volkova, 1974]. 

As is known, for efficient transmission of 
compression waves from transducers to a sample 
water, mineral oils and glycerine are suitable. If it 
is necessary to make measurements on a large 
number of samples, vacuum rubber plates 1-3 mm 
thick are glued on to the transducers' contact pads. 
These plates are a contact medium. A similar 
contact medium may be polyurethane. But a 
transmission of shear waves through contacts 
presents some difficulties. 

Physically, liquids, i.e. media acquiring the 
shape of the vessel they are placed in, do not 
possess shear elasticity and cannot transmit shear 
waves. Gluing transducers to a sample with 
hardening glues is very labour intensive 
[Merkulov, 1968]. Numerous attempts have been 
made to use water, transformer oil [Volkov & 
Grebennik, 1988], the solution of rosin in alcohol, glycerine, unhardened epoxy resins 
[Alyoshin et al., 1968] to transmit shear waves from transducers to a sample. 
Following Alyoshin [1968], an application of liquids with high viscosity has the 
greatest effect – the higher the viscosity, the fewer the losses. A number of 
experiments helped us to establish that liquids with polymer properties having low 
shear elasticity at low frequencies and high shear elasticity at ultrasonic frequencies 
are more suitable. For instance, unhardened epoxy resins pertain to media with 
required properties. But epoxy resins are toxic; they are difficult to remove from the 
sample with corrosive liquids, such as acetone.  

For a long time we have been using a high-viscous solution of non-crystallizing 
polysaccharides as a contact medium [Gorbatsevich, 1982]. Such a solution may be 
prepared, for instance, from artificial honey. By evaporating the solution is brought to 
high viscosity. The solution viscosity is checked up at high temperature. The solution 

Fig. 4.6. Shear wave pulse on the 
ultrasonic device screen.  
a is the moment of its first entrance. 

Fig. 4.7. Polarization vector 
indicatrix of the shear wave 
transducers. 
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taken on a rod should not flow down from it. The contact medium prepared in such a 
way transmits shear waves efficiently at frequencies from 0.3 MHz and higher, allows 
transducers' rotation relative to the sample at a speed of about 1 rev/min and is easy to 
remove with water.  
 
4.3. Design of acoustopolariscope with rotating platform 
 

Recently several designs of acoustopolariscopes [Gorbatsevich, 1995] have been 
developed. They are of two main types – with rotating handle and rotating platform. 
The most frequently used by us is the acoustopolariscope with rotating platform 
[Patent No. 1281993, USSR]. When using the acoustopolariscope with rotating 
platform the sample fixed on the rotating platform in the course of measurements 
rotates relative to immobile ultrasonic transducers (Fig. 4.8). 

 

 
 

Fig. 4.8. Design of acoustopolariscope with rotating platform. 
(1) base; (2) pole; (3) bracket; (4) travelling rod; (5) transducers; (6) sample; (7) 
rotating platform; (8) additional bracket; (9) angle scale; (10) pointer. 

 
The apparatus comprises a base (1), a pole (2) fastened in it and a bracket (3) 

placed on the pole. A travelling rod (4) passes through the bracket bush. At the rod 
lower end and in the base there are sockets, in which upper and lower transducers (5) 
are located. They are meant for radiating and reception of pure shear linear-polarized 
waves. A sample (6) is fastened on the rotating platform (7) with holders. The rotating 
platform itself is set on the additional bracket (8). On the rotating platform there is a 
scale (9) for calculating a rotation angle of the sample in relation to the polarization 
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vectors (PV) of the transducers. The calculation of this angle is made with respect to 
the mark (10) on the additional bracket.  

Along the pole (2) and rod (4) grooves have been made and in the bracket bushes 
keys and stoppers have been fastened to key the brackets and rods position. The upper 
and lower sockets design allows for the rotation of the transducers fastened in them. 
To calculate the angles of the transducers mutual rotation angular scales have been 
placed on the sockets.  

The socket base of the upper transducer fits into the rod cavity where a spring is 
located. In the rod opening there is a pin fastened in the socket base. The pin and 
opening ensure the spring initial compression and transducer elastic motion in its axis 
direction. The socket base of the lower transducer fits into the cavity of the base (1) 
cowling. In the same cavity is the spring ensuring, as the corresponding pin and 
opening, elastic travel of the transducer (without its rotation) in the direction of its 
axis. 

Additionally in the lower socket there is an external and internal cups. In the 
external cup there is a circular groove, the internal cup is connected with the handle 
going from the groove outside. The cups, circular groove and handle allow one to 
rotate the lower transducer exactly through 90°. In the external cup there is a fixing 
rod that enables to fix the handle in its extreme positions. The transducers (5) 
conductor cables are connected to an ultrasonic device. As the device design of Fig. 
4.8 suggests, the 
rotating platform with 
the hole in the centre, 
the angle scale and 
sample holder allows 
one to make 
measurements within 
the sample complete 
rotation relative to 
transducers 
polarization vectors. 
Spring-loading of the 
transducers sockets 
enables to eliminate 
the gaps between the 
contact surfaces of the 
transducers and 
sample. Figure 4.9 
presents the device 
photo.  

A more perfect 
type of 
acoustopolariscope 
with rotating platform 
and three poles (Fig. 
4.10) has Hooke's joint 
connected with the 
upper transducer cup. 
The total load on the 
contact surfaces of the 

Fig. 4.9. General view of acoustopolariscope with rotating 
platform (Patent N 1281993, USSR). One pole type. 
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transducers and sample is realized through a spring. Hooke's joint substantially 
decreases the measurement errors even if the sample faces are not quite parallel.  

 

 
The last design has a mechanical drive of the rotating platform (Fig. 4.11). The 

rotating platform through the worm-wheel, placed on its rim, is set in motion by an 
electric motor. The indicating instrument is interfaced with a personal computer by a 
special controller. The registered envelope amplitudes of the signal that has passed 
through a sample are digitized and processed. The computer plots and issues on the 
printer finished VP and VC acoustopolarigrams.  

Fig. 4.10. General view of acoustopolariscope with rotating platform. 
Three pole type.  
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Fig. 4.11. General view of the automated acoustopolariscope with ultrasonic device and 
computer (The authors of this construction are Golovataya O.S, Gorbatsevich F.F.) 
 
The mentioned types of acoustopolariscope design (Fig. 4.9-4.11) enable to make 
acoustopolariscope measurements over a wide range of ultrasonic frequencies (0.4-3.0 
MHz) and sample sizes (10-100 mm).  
 
4.4. Combined transducers for radiating and reception of compression and shear 
waves  
 

Using the processes of reflection and transformation on the media interface we 
have elaborated combined (integrated) transducers of compression and shear waves 
[Gorbatsevich, 1995]. The design of one of these transducers is given in Fig. 4.12. In 
the transducer's container housing (1) there are 
compression waves piezoplates (2) glued to the 
acoustic line made up of two parts – a contact 
(3) and face (4) ones. On the contact part there 
are ribs to weaken the waves transmitted along 
the acoustic line surface. The acoustic line 
contact part is made of electrolytic copper (Vp 
= 4.75 km/s, Vs = 2.26 km/s), while the face 
part is made of lead (Vp = 2.16 km/s). 

When an electric pulse is applied to the 
piezoplate located on the acoustic line face 
part, a compression wave pulse is excited, 
which on the plane dividing the contact and 
face parts is transformed into a shear wave 
pulse. The latter gets into a sample through the 
contact plane. The compression wave pulse 
arisen during the electric pulse application to 
the piezoplate will reflect from the dividing 
plane. Then at an angle of reflection equal to 
the angle of incidence, it will get into a sample 
also through the contact plane without transformation into a shear wave pulse. On the 
basis of the combined transducer of such a type an elastic waves velocity combined 
meter (Fig. 4.13) has been developed.  

The meter comprises a pair of combined transducers of ultrasonic waves (1), a 
stand (2), a switch of the work type (3), an ultrasonic device (4), connected to a digital 

Figure 4.12. Design of combined 
transducer on copper-lead media.  
1 – container housing; 2 – 
piezoelements; 3 – acoustic line 
contact part; 4 – acoustic line face 
part; 5 – fastening of container 
housing to the acoustic line.
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frequency meter (5), that is used for measuring short intervals of time. Figure 4.14 
gives an external appearance of the device. The principle of operation follows from 
the design (Fig. 4.13). Depending on what piezoelements of the combined transducers 
are connected to the device with the switch (3), either compression or shear waves are 
radiated into a sample. 

The special switch has a peculiar design. It consists of two individual units that 
are completely shielded from each other – a generator unit and a reception one. The 
piezoplates switching for radiating and reception of either compression or shear 
waves is performed by switches with a common handle. To fasten the combined 
transducers and to keep their contact surfaces plane-parallel during mutual travel a 
special stand has been designed. 

The advantage of the meter is in reduction of the time required for measuring the 
elasticity constants of solid media, since measuring of Vp and Vs is performed at one 
application of the transducers to the sample. In this case the accuracy of determining 
the elasticity constants increases due to sheer coincidence of contact conditions, 
frequency and the ways of propagation of compression and shear wave rays.  

The above 
measurement principles 
should be guided by in 
experimental 
investigations of elastic 
properties of anisotropic 
solid media. They allow 
one to conclude that to 
obtain the correct 
evidence it is necessary 
first to determine the 
orientation of symmetry 
elements by the 
acoustopolariscopy 
method. Then one 
should measure the 
density and velocity of 
compression and shear 
waves in the directions 
coordinated with the 
revealed symmetry 
elements.  
It should be noted that 
the time of wave 
propagation corresponding to the phase velocity is measured independently of the 
element orientation and symmetry type of the anisotropic medium in samples limited 
by plane-parallel surfaces with the help of the plane (locally plane) source an receiver 
(see Fig. 4.3). The acoustopolariscope and velocity meter compensate for the lack of 
equipment required for determination of all parameters of elastic and non-elastic 
properties of an anisotropic heterogeneous solid body.  

 

Figure 4.13. Design of elastic wave velocity combined meter.  
1 – transducers; 2 –stand; 3 –switch of the work types; 4 – 
ultrasonic device; 5 – digital frequency meter. 
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Fig. 4.14. External appearance of elastic wave velocity combined meter (without digital 
frequency meter device). 
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5. ACOUSTOPOLARISCOPY PROCEDURE 
 

5.1. General requirements for measurements 
 

Investigation of anisotropic media elastic properties covers preparation of a 
sample for tests, obtaining acoustopolarization diagrams, construction of spatial 
arrangement of elastic symmetry elements, determining elastic waves (compression 
and shear) velocities along the revealed elements and at certain angles to them. The 
last stage includes determination of a symmetry type and calculation of the sample 
elasticity constants. 

As is well known, the sample acoustopolariscopy along a particular direction 
allows one to obtain only one projection of the elastic symmetry element (axis or 
plane). Besides, the measurements of elasticity characteristics made along the 
symmetry axis of transversely isotropic medium do not allow one to discriminate 
between this symmetry type and an isotropic one [Fyodorov, 1965; Shaskol'skaya, 
1976]. The diagnostics of such media is possible only when the data are obtained in 
two non-equivalent projections. The spatial arrangement construction of a symmetry 
element of any medium is possible on the basis of no less than two projections. That 
is why the preferable form of the sample for tests is a cube or parallelepiped. The 
measurements made on two pairs of a cubic sample faces, as a rule, enable to 
determine the projections of two symmetry elements. The measurements made on the 
third pair of faces allow one to confirm the correctness of determinations performed 
for the other two pairs. This control measurement enables to increase the 
determination accuracy. 

The final result of the measurements is determination of a mutual spatial 
arrangement of elastic symmetry elements of the medium, its symmetry type, degree 
of anisotropy and the values of constants of elasticity or rigidity [Nye, 1964]. 

Sampling for the subsequent manufacturing of samples should meet certain 
requirements [Acoustopolarimetry…, 1990]. For instance, when processing a rock 
sample one of the faces should be sawn to coincide with the foliation plane while the 
edge should be oriented along the linearity in the foliation plane. The linearity may be 
identified, for instance, by the elongated form of mineral grains (amphibole, biotite 
etc.). If plane and linear elements are not seen in the rock, the orientation of the 
sample faces may be of any kind. It may also be related to mining and technological 
parameters, for instance, to the borehole or mining working axis direction. The face 
direction of mineral samples should be determined by the orientation of the symmetry 
crystallographic elements.  

The minimum length of a cube edge l is determined from the relation [GOST 
21153.0-75] 

 

νδ
dtVl p≥ ,                                                       (5.1)  

 
where Vp is the compression wave velocity; dt is the absolute error in time reckoning 
equal to half the scale marking of the measuring instrument, δν  is the given relative 
error in the velocity measuring. The minimum size l should be also subject to the 
condition 
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l ≥ 3Vp/f0 .                                                        (5.2) 

 

Sample sizes meeting the above conditions are indicated in standards including 
foreign ones [GOST 21153.0-75, D2845-83]. The sample faces are processed and 
reground in such a way that the results can be reproduced. The sample prepared for 
measurements and its indexing diagram are given in Fig. 5.1. 
 
5.2. Acoustopolariscope adjustment 
 

Before the acoustopolariscopy performance the acoustopolariscope should be 
adjusted. The purpose of the adjusting first stage is determining the mutual 
arrangement of the polarization vectors (PV) of the upper and lower transducers. At 
the second stage the transducers are set so that the lower transducer PV is oriented to 
0o on the rotating platform angle 
scale (Fig. 4.8). At the "vectors 
parallel" position the PV 
orientations of the upper and lower 
transducers should coincide.  

To conduct the adjustment 
second stage an anisotropic material 
with the known orientation of 
symmetry elements is required. A 
long bar should be produced of this 
material in such a way that its long 
side was parallel to a symmetry 
element. The length of this trial bar 
should be equal to the diameter of 
the rotating platform angle scale. Its 
width should be no less than the 
diameter of the transducers contact 
surface. A segment of a wooden 
ruler with a well-defined structure 
may be used as such a medium. For 
better orientation a cutting line 
should be drawn along the structure 
lines through the ruler centre.  

The acoustopolariscope adjustment covers the following operations. 
1. To set the transducers in the acoustopolariscopy sockets and fastened by lock 

screws. 
2. To apply a contact medium to the centres of the transducers working surfaces. 
3. To move the device handle leftwards against stop to the position "vectors 

crossed" (VC) and fasten it.  
4. To combine the transducers working surfaces, to free the turn stopper of the 

upper fixture and looking at the device screen find the position VC. At this 
position the signal amplitude on the screen will be minimum. To fasten the turn 
stopper of the upper fixture.  

5. To apply a drop of the contact medium to each of the two sides of the test bar and 
place it between the transducers. 

Fig. 5.1. Sample indexing diagram. 
1, 2 and 3; (1), (2) and (3) are indexing of the 
sample directions and faces, respectively. 
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6. Turning the bar around the axis that passes through the transducers centres, to 
find its position at which the signal minimum is observed on the screen.  

7. To superpose "zero" on the rotating platform scale with the rotation angle pointer, 
to count angle α1 between the rotation angle pointer and the cutting line on the 
bar. To move apart the transducers working surfaces, to take the bar out of the 
gap between them.  

8. To free a stop screw, to turn the lower transducer by an angle α1 to the side 
opposite to the direction of counting the angle α1 from the rotation angle pointer. 
After that to fasten the lower transducer in the socket by the stop screw again. 

9. To apply the contact medium to the centres of the transducers working surfaces, 
to superpose the transducers working surfaces. To free the turn stopper of the 
upper fixture and watching the signal on the screen to find the position VC again 
(see point 4). Then to fasten the turn stopper of the upper fixture. 

10. To perform operations according to points 5 and 6. If the cutting line on the bar 
coincides exactly with the rotation angle pointer (and at the zero on the scale of 
the rotating platform combined with the pointer the line passes through 0o and 
180o of the scale) the adjustment may be considered to be completed. However, if 
between the texture line and the mark of the rotation angle pointer there is some 
angle α2, the operations according points 5-9 should be repeated.  
After all adjustment operations the handle is moved rightwards against stop to the 

position "vectors parallel" (VP) and is fastened in this position. In this case the 
transducers polarization vectors are on the line passing through the rotation angle 
pointer and centres of the contact pad.  

 

5.3. Acoustopolariscopy performance 

 
Polarization measurements of the test media samples are aimed at determination 

of the elastic anisotropy degree, effect of the linear acoustic anisotropic absorption 
(LAAA) and spatial orientation of elastic 
symmetry elements. The measurement procedure 
is comparatively fully set forth in the works 
[Lucas, 1961; Acoustic polarization…, 1985]. The 
measurements are performed by 
acoustoplariscopes, which designs are given in 
Figures 4.9-4.11. Before the measurements the 
transducers of shear waves are connected to an 
ultrasonic device so that the upper transducer is a 
radiator. Then the travelling platform is set at the 
angle scale zero mark opposite the mark on the 
additional bracket. The marks of the transducers 
polarisation vectors are aligned.  

The transducers contact surfaces and sample 
working faces are lubricated by a contact medium. 
In this case one must be careful that the contact 
medium coats the contact surfaces of the 
transducer and sample evenly without breaks and 
bubbles. After the sample has been set on the 
contact surface of the lower transducer and 
fastened on the rotating platform the rod with the 

Fig. 5.2. Acoustopolarigram of 
metadiabase. Solid and dashed 
lines are for parallel and crossed 
polarization vectors, respectively. I, 
II are projections of symmetry 
elements; β1, β2 are angles 
between the directions of 
symmetry elements projections 
and a sample face. 
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upper transducer is delivered downwards until there is an acoustic contact between the 
transducers and sample. Herewith compressing the spring at the rod base and fixing it 
in the compressed state, a uniform pressure of the transducers contact pads on the 
sample faces is ensured. Some time is required for the contact medium to form a thin 
even layer in the clearance between the transducer and sample. As a rule, on 
completion of this time the amplitude of the shear pulse (Fig. 4.6) on the device 
screen ceases to increase.  

The measurements consist in moving the 
rotating platform with a step of 1o, 5o or 10o and 
fixing the amplitude АVPМ of the shear waves 
passing through the sample (Fig. 5.2). The 
measurements at the VP position are concluded 
when the angle count pointer is set at 360o. In the 
course of measurements to exclude the impact of 
non-linearity of the internal circuits of the 
ultrasonic device and its amplifier, it is 
recommended to maintain the same signal on the 
electron-beam tube (EBT) screen by the 
attenuator's handles. In this case the attenuation 
degree in decibels will reflect relative changes in 
the signal level in the course of measurements. 

On completion of the measurements at the 
VP position, the fixing rod is freed and the lower 
transducer is turned by 90o with the handle and 
fixed in this position. Thus the transducers 
polarization vectors appear to be at the crossed position (VC). A set of amplitude 
АVCМ measurements (at VC position) are made with the same step within a full angle 
2π of the platform rotation.  

If within the rotation angle 0-360° alterations of the relative amplitudes at both 
VC and VP positions are not registered, the measurements should be repeated. To this 
effect the transducers with a natural frequency that is not a multiple to the initial one 
are installed in the acoustopolariscope sockets. 

To increase precision the measurements can be 
duplicated at the reverse motion of the rotating 
handle or platform. Such a measure will allow one 
to assess the alteration of the contact medium 
thickness under the spring and to exclude the 
impact of this alteration when processing the data. 

After observations of the amplitudes АVPM, and 
АVCM variations acoustopolarigrams are drawn in 
the following order: 
1) the values of АVPM (in decibels) within the 

angles of 0-360o are examined and the 
maximum one (АМАХ) is found; 

2) every АVPM is extracted from АМАХ; BVP = АМАХ 
- АVPM, dB; 

3) AVCM is extracted from АМАХ; BVC = АМАХ - 
AVCM, dB; 

4) using the table of conversion of decibels to 
relative amplitudes, by the values of BVP and BVC corresponding relative 

Fig. 5.4. Symmetry elements 
projections marked on the 
sample faces by acousto-
polarization measurements.  

 

Fig. 5.3. Acoustopolarigram of 
amphibolite with LAAA 
manifestation, αD is the angle 
between the axis of the greatest 
"transmission" and a normal to 
sample face. 
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amplitudes АVPM and AVCM are found. They are initial for drawing 
acoustopolarigrams. As a rule, the acoustopolarigrams are plotted in polar co-
ordinates.  
The points АVPM are connected with solid lines and the points AVCM with dotted 

ones. The figure outlined by the solid line is the VP acoustopolarigram and that 
outlined by the dotted line – the VC acoustopolarigram (see Fig. 1.4, 5.2). A computer 
programme for data input and drawing acoustopolarigrams is available (see 
Attachment 1). 

By the VP acoustopolarigram the degree of LAAA effect for the medium D and 
the angle αD of the greatest transmission (GT) axis are determined, Fig. 5.3. The angle 
αD is determined between the axis O and the strait line drawn through the polar axis 
and opposed maxima АVPM1 and АVPM2. The LAAA degree is calculated by formula 
(2.3). 

On the VC acoustopolarigram strait lines are drawn through the polar axis and the 
opposed minima of the envelope AVCM (Fig. 5.2). These lines are the projections of the 
symmetry axes and planes of the sample medium. The angles β1 and β2 between the 
co-ordinate axis and the strait lines drawn allow one to fix the location of the 
symmetry elements projections relative to the sample sides.  

At the final stage the symmetry elements projections are transferred to the sample 
sides (Fig. 5.4). They characterize the peculiarities of the medium elastic anisotropy 
in three mutually perpendicular directions. The parameters of the spatial orientation of 
the elastic symmetry elements can be determined with Wolf's stereographic projection 
[Acoustopolarimetry…, 1990]. In the event that the revealed symmetry elements are 
not parallel to the sample sides, to perform further measurements one should cut in 
the sample the planes oriented along the revealed elements.  

As an example, in Fig. 5.4 the line abc shows the plane formed by the elements 
a'c', a'b' and b'c'. Cutting the planes parallel to abc as well as perpendicular to them is 
performed in such a way that a new cubic sample or parallelepiped is produced. 

 

5.4. Elastic wave velocity determination 

 
The necessary measurements are made on the sample whose sides are parallel and 

perpendicular to the revealed symmetry elements (Fig. 5.5). The combined meter of 
compression and shear wave velocities (Fig. 4.14) enables to make measurements 
most exactly and efficiently. 

Before the measurements the sample is placed 
between the transducers so that its centre coincides 
with the centre of the contact pads. When 
measuring Vs, the transducer polarization vectors 
(PV) are superposed with the symmetry element 
projection of the media marked off on the sides. In 
the course of measurements the travel time of 
compression tp and shear ts1 and ts2 waves in the 
sample is determined. To increase determination 
reliability of the first entry point of shear waves, 
one should turn the upper transducer by an angle 
from the position where its PV coincides with PV 
of the lower transducer. All half-periods belonging 
to the pulse to be found change their amplitude 

Fig. 5.5. Indexing of shear wave 
velocities in a cubic sample. 
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synchronously with the turn and at the point of the first entry a sudden change in the 
wave phase is observed. If the difference between ts1 and  ts2 is so small that it can be 
compared with the scale factor of the measuring instrument, then only ts1 is 
determined.  

Compression and shear waves velocities Vp,s are determined by an ordinary 
formula 

 

Vp,s = l/(tp,s – td),                                                        (5.3)  

 
where l is the distance between the transducers along the sonic test line, mm; tp,s is the 
time of the wave pulse propagation from the source to the receiver, msec; td is the 
time of the pulse delay in the instrument and transducers circuits. 

If due to a small difference between ts1 and  ts2 only ts1 и Vs1 have been 
determined, then the calculation of Vs2. is done by the following formula derived from 
(1.7): 

 

Vs2 = (360f0lVs1)/(360f0l + δVs1),                                 (5.4) 

 
where f0 is the frequency of the transducers natural oscillations, Hz; l is the sample 
length, m; Vs1, msec; δ, grades, is the phase difference, calculated by formula (1.17). 

In this case one should keep in mind that formula (1.17) provides a number of 
angle values: δ, 2π-δ, 4π-δ etc. With manifestation of LAAA formula (1.17) gives 
decreased values of δ. To calculate δ, the values of АVPM relative units, at the points 
making an angle nπ/4 with the orientation of the medium symmetry elements are 
usually taken. 

After completing the measurement of all the velocity values for compression and 
shear waves for all the cubic sample sides, the following indexing order of the values 
under measurement is convenient to use: 

 

Vij = 

333231

232221

131211

VVV
VVV
VVV

 ,                                            (5.5) 

 
where V11 is the compression wave velocity measured in the direction 1-1'; V22 is the 
same velocity in the direction 2-2'; V33 is the same velocity in the direction 3-3', V12 is 
the shear wave velocity measured in the direction 1-1' with PV orientation in the 
direction 2-2'; V13 is the same velocity in the direction 1-1' with PV in the direction 3-
3'. Similarly V21, V23, V31, V32 are marked. The measured values of Vij are presented as 
a rectangle table (quasimatrix). As will be shown later, the form (5.5) of presenting 
the results is convenient for analysing the type of the medium elastic symmetry. 
Thus, the above measurement procedure allows to reveal the following. 
1. The number of symmetry elements in any desired section of the sample, their 

arrangement and anisotropy presence. 
2. Spatial location of the medium symmetry elements including their azimuth and 

angle of incidence in the sample oriented to cardinal-points. 
3. The presence of linear acoustic anisotropic absorption and other effects. 
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The presented procedure enables to determine compression and shear waves 
velocities in the directions coinciding with the orientation of the symmetry elastic 
elements as well as in other directions that are necessary for calculation of the whole 
set of elasticity constants. The procedure allows to present the measurement results in 
the form that is suitable to analyse anisotropy in a sample.  

To our mind, the acoustopolariscopy method as the radial-beam method for the 
sonic test of a subject of inquiry can be applied not only to samples. The method of 
seismic prospecting of a geological object [Patent No. 1434377] creates prerequisites 
for transference of the above acoustopolariscopy principles to comparatively stretched 
massifs. This method will allow to reduce expenditures on carrying out large-scale 
determinations of anisotropy parameters in the massifs within the upper crust and 
mantle by substituting the proposed method for the azimuthal one [Raitt, et al., 1969; 
Markov, 1977]. We think that the acoustopolariscopy method may be useful when 
solving some problems in crystal physics, in particular, when studying and developing 
new composite, metal-ceramic and other future materials. 
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6. DETERMINATION OF THE SYMMETRY TYPE AND ELASTICITY 
CONSTANTS IN ANISOTROPIC MEDIA 

 
6.1. Ways for determining the medium symmetry type and elasticity constants 

 
As is known, the medium symmetry type is determined by the number of 

symmetry elements, their appearance (axis, plane) and mutual arrangement [Berry et 
al., 1983]. There are several ways [Tillman & Bennet, 1973; Prodaivoda, 1978; 
Harder, 1988], that allow to perform the analysis of the elastic symmetry elements 
from the measurements of the elastic wave phase velocity in several mutually non-
equivalent directions.  

As mentioned in the introduction, anisotropic media can be described by triclinic, 
monoclinic, rhombic, tetragonal, trigonal, hexagonal and cubic systems of elastic 
symmetry. When calculating mineral elasticity constants, as a rule, to determine the 
number and orientation of elastic symmetry elements, optical, X-ray-structural, 
neutron transillumination and other methods are used [Belikov et al., 1970; Adamesku 
et al., 1985; Aleksandrov & Prodaivoda, 2000]. The constant calculation is carried out 
by using elastic wave velocities in crystal certain orientations [Voigt, 1910]. In some 
cases crystal deformability indices were used for calculations [Belikov et al., 1970]. 
For instance, to determine elastic and piezoelectric constants of rhombic crystals by 
the acoustic method, 4 samples are needed. The samples should be sawn at different 
angles to crystallographic axes [Bogdanov, 1997]. Experimental determination of all 
elastic constants of a low syngony mineral is a long and labour-intensive process 
including different methods and inquiring a few samples of different shape. The most 
complete enumeration of mineral elasticity constants is in the works [Belikov et al., 
1970; Alexandrov & Prodaivoda, 2000]. But a full set of elasticity constants has not 
been determined for a large number of minerals so far.  

For determination of the rocks elastic properties other approaches have been 
developed. As has been shown before rocks are polycrystalline and most often 
polymineral formations, whose elastic properties result from virtually indeterminable 
number of grains [Voigt, 1910; Hill, 1952]. Every one of those grains has its own 
elastic symmetry type and, accordingly, its own set of elasticity constants. Besides, 
most often every grain is bounded by a surface of a very complicated shape. At this 
surface one grain makes contact with another. But these contacts are seldom 
continuous. In crystalline rocks grain-to-grain contacts alternate with microcracks that 
arise as effusive rocks cool under metamorphic transformations, deformations etc. 
Due to a great number of factors, that in fact have not been defined but they influence 
the crystalline rock elasticity, the calculation of the rock elasticity constants can be 
made only averagedly [Voigt, 1910; Hill, 1952; Belikov et al., 1970]. For these 
reasons, on the whole, the system of elastic symmetry of polycrystalline formations is 
higher than that of minerals composing the [Adamesku et al., 1985; Archean…, 
1991]. 

If, for instance, a rock consists of mineral grains of triclinic and monoclinic 
syngonies whose axes orientation is, on the average, determined, then this suggests 
the presence of elastic anisotropy. But the orientation of such axes, as a rule, is 
characterized by some statistical dispersion. In this case the rock symmetry system 
will be higher than the mineral symmetry system. Therefore the majority of 
crystalline rocks will be characterized by rhombic, tetragonal, hexagonal, cubic and 
isotropic symmetry type. This is corroborated by the known experimental data 
[Nevsky, 1974; Prodaivoda, 1980, Egorkina & Bezgodkov, 1987; Hess, 1964; Tien-
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When Lo et al., 1986; Chandra & Kenneth, 1988], as well as by the indirect 
assessment results, obtained by microstructural analysis [Dobrzhinetskaya, 1978; 
Kozhevnikov, 1982]. 

In conclusion we can say that elastic properties of crystalline rocks have both 
determined and statistical components [Prodaivoda, 1991]. Their ratio should be 
determined for every specific rock taken at every specific site. We believe that for the 
most part the elastic symmetry type of crystalline rocks can be no lower than 
orthorhombic. This consideration is based on the fact that the most frequent factor 
forming the rock elastic anisotropy is the strain tensor, especially if those strains act in 
the Earth crust during a long period of (geological) time.  

The particular merit of the acoustopolariscopy method is that it allows to 
determine the symmetry type of an anisotropy body before the stage of elastic wave 
velocity measurement. The velocity measurements performed at the second stage are 
made in the directions conformable with the orientation of the elastic symmetry 
elements revealed with acoustopolariscopy.  

Determined velocities put down in the form of quasimatrix Vij (5.5) allow to 
obtain additional information about the symmetry type of a solid body. At first the 
symmetry type is determined by the number and mutual angles of projections of 
elastic symmetry elements in every of mutually perpendicular directions in the 
sample. An additional distinguishing feature of the transverse-isotopic symmetry type 
is obtaining the VP acoustopolarigram in the circle form on one of the sample faces. 
The analysis of velocity values by their ratios in the Vij quasimatrix enables [see 
Acoustopolarimetry…, 1990] to check up the conclusion concerning the symmetry 
type being determined. 

 
6.2. Analysis of location of symmetry elements in rhombic symmetry media 

 
Let us consider a model of a rhombic symmetry media consisting of two systems 

of thin parallel layers. The layer systems are perpendicular to each other, as Fig. 6.1 
shows. Assume that the layers lying in the plane through which the directions 1 and 2 
pass are more high-velocity ones while as those lying in the plane passing through the 
directions 1 and 3 are low-velocity ones. Accordingly, the plane 1 and 2 will be called 
the plane with higher anisotropy and the 
plane 1 and 3 - with weaker one. 

From Fig. 6.1 one can easily conclude 
that the compression wave velocities will 
obey the inequality system V11 > V22 > V33. 
For instance, if we orient a beam of shear 
waves in the direction 1 with the 
polarization vector oriented along the 
direction 2, we should register the greatest 
shear velocity V12 = V21. The intermediate 
by value will be the velocity V13 = V31. The 
least shear velocity V23 = V32 will be 
registered along the direction 2 and 3 with 
the polarization vector oriented 
accordingly along the direction 3 and 2. On 
the whole for the medium (Fig. 6.1) the 
following inequality series can be 
formulated: 

Fig. 6.1. Model of thin-layered medium 
consisting of mutually perpendicular 
systems of homogeneous isotropic 
layers with different elastic 
characteristics. 
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V11 > V22 > V33,  V12 = V21 > V13 = V31 > 
V23 = V32.                                              (6.1) 

 
The ratios (6.1) represent only one 

version of element orientation for the 
rhombic medium elastic symmetry. If the 
measurements result in revelation of other 
inequalities between the values of Vij then 
the spatial location of the planes with 
higher and weaker anisotropy will be 
different [Gorbatsevich, 1995]. 

From the ratios (6.1) the inequality 
systems for velocities in transverse-
isotropic media can be easily deduced. For 
the medium consisting of plane-parallel 
layers (Fig. 6.2) the symmetry axis will 
coincide with the direction 3. As is known, 
in such a medium the least compression wave velocity will be observed in the 
symmetry axis direction. On the whole, the velocity values will obey the following 
ratios: 

 
V11 = V22 > V33,  V12 = V21 = V13 = V31 > V23 = V32,                        (6.2) 

 
It should be borne in mind that another type of a transverse-isotropic medium 

may occur. It is represented by a system of isometric parallel to each other rods 
penetrating homogeneous material (Fig. 6.3). 

In this case the greatest 
compression wave velocity will be 
observed in the direction coinciding 
with the rods' axes. In the same 
direction the medium symmetry axis 
will run. For such a medium the 
inequality system will appear the 
following way: 

 
V11 = V22 < V33,  V12 = V21 < V13 = V31 
= V23 = V32.                                    (6.3) 

 
This type of transverse-isotropic 

symmetry occurred in amphibole-
bearing rocks of the Kola Superdeep 
Borehole in the 6.6-7.7 km depth range 
[Gorbatsevich, 1995]. This type of 
symmetry is likely to result from 
metasomatic processes.  

By the measurement results the ratios (6.1)-(6.3) allow one to determine the 
elements spatial location of orthorhombic and transverse-isotropic media. The 
acoustopolariscopy results should show the presence of elastic anisotropy for all the 
three pairs of faces in the sample of orthorhombic symmetry and for the two pairs of 

Fig. 6.2. Model of thin-layered medium 
composed of homogeneous isotropic 
parallel layers with different elastic 
characteristics 

Fig. 6.3. Model of the medium composed 
of a system of quasi-isometric parallel to 
each other rods penetrating 
homogeneous material. 
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faces in the sample of transverse-isotropic symmetry. It is worth noting that the ratios 
(6.2, 6.3) for transverse-isotropic symmetry media and (6.1) for the rhombic 
symmetry media should be strictly met for homogeneous fine-grained rock varieties. 
For substantially heterogeneous or coarse-grained rocks the ratios between the elastic 
wave velocities will reflect the natural scatter of their characteristics.  

As follows from the above, determination of the medium symmetry type by the 
presented method is carried out by two 
independent ways: with acoustopolarigrams 
analysis and by velocity ratios in quasimatrix 
Vij (5.5). 

After determination of the symmetry 
elements number and type, their location and 
corresponding reorientation, three additional 
pads parallel to each other may be formed on 
the sample. Through those pads the values of 
V102, V103,, V203, are measured (Fig. 6.4). 
These values along with the values 
constituting the Vij quasimatrix and the rock 
density value of ρ are necessary and 
sufficient for determining a full set of 
elasticity constants for orthorhombic media 
and media of higher symmetry types. 

 
6.3. Calculation of elasticity constants for orthorhombic media and media of 
higher symmetry type 

 
Let us consider a medium of orthorhombic symmetry as an initial one since from 

the equation system for calculation of elasticity constants of this symmetry medium, 
with the presence of some equalities, one can determine the constants of tetragonal, 
hexagonal and other symmetry types. A set of 9 independent constants meet an 
orthorhombic system of elastic symmetry [Belikov et al., 1970] 

 

Cαβ =    

C C C
C C C
C C C

C
C

C

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.                                (6.4) 

 
In this matrix С12 = С21, С13  = С31, С23 = С32.  

After all 9 elastic rigidity constants Сαβ  of a rhombic symmetry medium have 
been determined one can calculate elastic compliance values Sαβ or technical moduli 
using the known ratios [Belikov et al., 1970; Gorbatsevich, 1995]. The constants Сαβ 
calculation for a rhombic symmetry medium can be performed with the following 
equations [Urupov & Lapin, 1972; Nevsky, 1974]: 

 
                            C11= ρ(V11)2,   C22= ρ(V22)2,   C33= ρ(V33)2,        
  

Fig. 6.4. Sample for determining 
elasticity constants of orthotropic 
media (irregular dodecahedron). 
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 C44= ρ(V23)2,   C55= ρ(V13)2,   C66= ρ(V12)2.                         (6.5) 
 
In this case among the Vij values the inequality V11 > V22 > V33 should be met. 

The constant С12 can be calculated from the expression [Urupov & Lapin, 1972]; 
 

66
2

2
2

1
1

12 2sin
1 CFFC −−=
θ

,                                (6.6) 

 
where 1

2
22116622

2
1021 sin)()(2 θρ CCCCVF −−+−= , 

           )2(sin 6622111
2

66222 CCCCCF −+−−= θ . 
In the last-mentioned expressions θ1 is the angle between the normal to the equal 

phase front and the plane of the weaker anisotropy of the orthotropic medium. The 
calculation of the angle θ1 is performed from the direction in which V22 has been 
measured along the plane of stronger anisotropy passing through the directions in 
which the values of  V11 and V22 have been measured. If the angle θ1 is equal to 45o 
then the equation (6.6) appears more compact: 

 

C V C C C C C C12 102
2

11 22 66
2

11 22
2

662 1
2

1
4

= − + − − − −[ ( ) ] ( )ρ .           (6.7) 

 
To determine C13 one can use the formula [Urupov & Lapin, 1972]: 
 

55
2

2
2

1
2

13 2sin
1 CFFC −−=
θ

,                                (6.8) 

 
where 2

2
33115533

2
1031 sin)()(2 θρ CCCCVF −−+−= , 

           )2(sin 5533112
2

55332 CCCCCF −+−−= θ . 
The angle θ2 is calculated from the direction in which the V33 value has been 

measured in the weaker anisotropy plane passing through the directions in which V11 
and V33 have been measured. With θ1 = 45o the equation will take the form: 

 

C V C C C C C C13 103
2

11 33 55
2

11 33
2

552 1
2

1
4

= − + − − − −[ ( ) ] ( )ρ  ,           (6.9) 

 
To determine the constant С23 one can use the formula [Urupov & Lapin, 1972]: 
 

44
2

2
2

1
3

23 2sin
1 CFFC −−=
θ

,                         (6.10) 

 
where 3

2
33224433

2
2031 sin)()(2 θρ CCCCVF −−+−= , 

           )2(sin 4433223
2

44332 CCCCCF −+−−= θ . 
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The angle θ3 is calculated from the direction, in which V33 has been measured in 
the weaker anisotropy plane passing through the directions, in which V22 and V33 have 
been measured. 

As follows from the formulae (6.4-6.10), to calculate all 9 constants of a rhombic 
symmetry medium, in addition to the values of Vij, given in the matrix form (5.5), it is 
necessary to determine the values of compression wave phase velocity V102, V103 and 
V203 in the directions forming the angles θ1, θ2 and θ3 to the weak and strong 
symmetry planes. The values of V102, V103, V203 can be determined if we form three 
additional pads parallel to each other in such a way that the normals to them are 
directions (102), (103) and (203) as Fig. 6.4 shows. The calculations of С12, С13, С23 
are greatly simplified if directions (102), (103) and (203) form the angles θ1 = θ2 = θ3 
= 45° to the medium symmetry elements. 

The measurements of V102, V103, V203 should be performed considering the 
requirements set forth in chapters 4 and 6, i.e. the phase velocity of the wave front 
propagation should be measured. One should also take into account that it is not 
known in advance how elastic symmetry elements and, in particular, weaker and 
stronger symmetry planes are arranged in the sample. But, as has been mentioned 
above, to calculate the constants Сαβ one should know the arrangement of the medium 
elastic symmetry elements relative to the faces or directions in the sample. Therefore 
to define the type of elastic symmetry elements it is necessary to use the analysing 
procedure for acoustopolarigrams and matrices Vij (5.5). The purpose of this analysis 
is to divide media of rhombic, tetragonal, hexagonal and cubic symmetry 
[Gorbatsevich, 1995]. 

The medium being analysed belongs to the orthorhombic system only when all 
the 9 constants are represented by substantial values that are not equal to zero and to 
each other. But the calculation results may reveal an equality or a relationship 
between individual constants.  

A particular view of such inequalities or relationships allows to diagnose other 
simpler (higher) systems of elastic symmetry. 

If the constants C11 = C22, C44 = C55, C13 = C23, but C33, C12 and C66 are not equal 
to each other, then the medium has tetragonal symmetry (symmetry classes 422, 4mm, 
4/mmm, 42m ). A total number of independent constants is equal to 6.  

If the constants C11 = C22, C13 = C23, C44 = C55, C12 = C11 - 2C66 are not equal to 
each other, the medium is transverse-isotropic. The number of independent constants 
is equal to 5. 

If C11 = C22  = C33, C44 = C55 = C66, C12 = C13 = C23, the medium is a cubic 
symmetry. The number of constants is equal to 3. 

If C11 = C22  = C33,  C44 = C55 = C66 = (C11 - C12)/2, C12 = C13 = C23, the medium 
is isotropic. The number of independent constants is equal to 2. 

Elastic symmetry of crystalline rocks, probably, is not exhausted by the above 
systems. More complicated (low symmetry) than orthorhombic media are described 
by the number of the constants more than 9. The way of their determination has not 
been determined yet due to complex relations between elastic wave velocities and 
elasticity constants. A rock may be assigned to complex systems (trigonal, monoclinal 
or tetragonal) if more than two symmetry elements, their non-orthogonality, have 
been revealed by acoustopolariscopy in a medium section. An identification of the 
elastic symmetry class of such media may be performed by the search of a similarity 
with the corresponding class of the crystal symmetry. The example showing this 
possibility is given in Fig. 6.5. 
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One should take into account that elastic wave velocities in heterogeneous 
polycrystalline rocks absorbing elastic waves, as a rule, experimentally, cannot be 
precisely defined even with sophisticated measuring equipment. The obstacle for this 
is, first of all, heterogeneity - variations in composition and structure of such a 
medium. Moreover, the lower is the medium symmetry class, the higher is the 
uncertainty when calculating its constants. Therefore, the determined constants and 
class of elastic symmetry of some geological singularity should be corroborated by 
parallel measurements on other samples. First, we should consider the peculiarities of 
the media of pseudohexagonal and rhombic symmetries that are complicated ones. 

 
6.4. Criteria for identification of weakly anisotropic media 

 
A large number of observations performed on the samples [Belikov et.al., 1970; 

Reference book, 1975; Physical…, 1988; Petrophysics, 1992], as well as by the 
seismic methods in extended geological bodies [Chesnokov, 1977; Hess, 1964; Raitt 
et al., 1969] showed that weakly anisotropic rocks 
prevail. The paper [Thomsen, 1986] dedicated to 
weak anisotropy presents evidence that weakly 
anisotropic and transverse-isotropic media occur 
most frequently among sedimentary rocks. The 
paper shows that the angle dependence of Vp, Vs1 
and Vs2 cannot be described by a function 
representing a comparatively simple figure, for 
instance, ellipse. M.V.Nevsky [1974] has considered 
a special criterion that enables to divide media into 
weakly and highly anisotropic. When elastic waves 
propagate through thin-layered media one can 
observe loops (lacunas) on the circle indicatrix of 
the shear wave velocity Vsv (with the polarization 
vector in the plane passing through the symmetry 
axis), if the maximum value of Vsvmax at some point 
of the indicatrix exceeds 1.13-1.14 times the value 
of Vsv measured in the layers direction. The presence 
of loops means that in one and the same direction 
four various shear wave velocities can be detected. Note that only for one of them the 
polarization vector lies in the medium symmetry plane. M.Musgrave and M.Markham 
observed such splitting of a shear wave pulse in zinc crystals [Musgrave & Markham, 
1961]. The absence of loops on the circle indicatrixes of the velocity may be one of 
the main signs of a weakly anisotropic medium.  

If the conditions, defining the medium belonging to transverse-isotropic or 
weakly anisotropic ones, have been met, the indicatrixes of the wave velocity may be 
calculated with the simplified equations suggested by L.Thomsen [1986]. According 
to this work, a medium is weakly anisotropic if the factors 

 
ε = (V11 –V33)/V33 ≤ 0.2,  γ = (V23 –V12)/V12 ≤ 0.2,  κ = (Vs102 –V12)/V12 ≤ 0.12.    (6.11) 

 
In the last-mentioned inequalities the indexing given in the matrix Vij has been 

used (5.5). The value of Vs102 is determined in direction 102 (Fig. 6.4) so that the 
polarization vector of shear waves is oriented in the plane passing through the 
medium symmetry axis.  

Fig. 6.5. Acoustopolarigram of 
quartz monocrystal (trigonal 
syngony), obtained in the 
section perpendicular to the 
third order axis. 
Solid line - parallel vectors, 
dotted line - crossed vectors. 
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Following V.S. Seleznyov et al. [1986], a simplified way for calculation of the 
transverse-isotropic medium constants is suggested. The criteria that allow to assign a 
medium to weakly isotropic are inequalities similar to the above: ε ≤ 0.13, γ ≤ 0.20, κ 
≤ 0.13. As test examples showed, the application of the simplified calculation with 
these inequalities being observed may result in an error not exceeding 3-4% 
[Seleznyov, 1986; Thomsen, 1986]. 

Thus, the review of the known works allows one to consider the following criteria 
of weakly to average anisotropic media to be close to universally recognized:  

 
ε = (V11 –V33)/V33 ≤ 0.15,  γ = (V23 –V12)/V12 ≤ 0.2,  κ = (Vs102 –V12)/V12 ≤ 0.13.  (6.12) 

 
Similar criteria can be applied to an anisotropy assessment of more complicated 

media than transverse-isotropic. For instance, for an orthorhombic medium the 
number of such criteria rises to 9. Except for the assessment of the weak anisotropy 
degree by the indexes ε, γ and κ, the necessity of determining the anisotropy medium 
factor arises. The factor characterizes the anisotropy degree of a medium as a whole.  

 
6.5. Integral assessment of elastic anisotropy in crystalline rocks 

 
The recording of elastic wave velocities in quasimatrix Vij form suggested by us 

(5.5) covers 9 values. The quasimatrix diagonal terms V11, V22 and V33 are 
compression wave velocity values and the terms V12, V13 are shear wave velocity 
values measured on the sample's first side, V21 and V23  - on the second and V31 and 
V32 - on the third side. If the indicated values have been determined along the sample 
elastic symmetry elements they take, accordingly, the greatest and the least, i.e. 
extreme values. Naturally, the comparison of, for instance, V11 and V22, or V11 and V33 
for determining the anisotropy index of the rock as a whole is not sufficient. A general 
index of the rock elastic anisotropy for compression waves should take into account 
the distinction of all the V11, V22 and V33 values from one another. Respectively, the 
anisotropy generalized index for the shear waves measured values should take into 
account the V12, V13, V21, V23, V31 and V32 values.  

First, we shall consider a possibility of presenting the anisotropy generalized 
index for compression waves through the quasimatrix diagonal terms (5.5), i.e. 
through V11, V22 and V33. In crystalline metamorphosed rocks the difference between 
the Vii terms is most often caused by palaeostresses long influence resulting in 
rearrangement of their mineral composition and structure [Brace, 1960; Kozhevnikov, 
1982]. From the elasticity theory [Bezukhov, 1968] it is known that the sum of σmax = 
σ11, σav= σ22, σmin= σ33 values or, to put it otherwise, the sum of σ11 + σ22 + σ33 is an 
invariant, i.e. it does not change when three mutually perpendicular directions, along 
which the values are determined, rotate in space. In accordance with the accepted 
conditions relating to proportionality of the measured velocities to the palaeostress 
values (2) and (3), the sum of V11 + V22 + V33 with some assumptions, may be 
considered to be invariant in regard to mutually perpendicular directions along which 
they have been determined. Such determinations can be performed, for instance on a 
cubic sample. 

By the expression   
 

Vav = (V11 + V22 + V33)/3                                       (6.13) 
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we calculate an average velocity of compression waves in an anisotropic sample. The 
value of Vav may be considered to be equivalent to the quasimatrix spherical tensor 
(5.5). Using this value one may introduce a characteristic that reflects the anisotropy 
degree of the sample as a whole. Such a characteristic (let us call it intensity or 
anisotropy generalized factor for compression waves) can be determined as the sum of 
standard deviations of individual Vii values from Vav: 
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The assessment made by formula (6.14) is also important because it coincides in 

shape with the deviator expression for the stress tensor in a solid body and may be 
invariant relative to the variation in the co-ordinates direction [Bezukhov, 1968]. If 
the anisotropy generalized factor in respect to the elasticity constants is supposed to 
be applied then it should be transformed into: 

 
222

33
222

22
222

112 )()()(1
avavav

av
c VVVVVV

V
A −+−+−= .                 (6.15) 

 
In this expression of the anisotropy factor Аc it is taken into account that when 

calculating the elasticity constants the velocity values are squared (see (6.5)-(6.10). 
K.S.Alexandrov & G.T.Prodaivoda [2000] have suggested anisotropy factors 
reflecting the distinction of the medium of a certain symmetry type from an isotropic 
body.  

Now let us consider the quasimatrix terms (5.5) composed of shear wave 
velocities. Previously it was conventional to evaluate the anisotropy degree for every 
side of a cubic sample through the birefringence factor [Clark et al., 1983; 
Gorbatsevich, 1995]. For instance, the shear wave birefringence factor determined for 
the first side is equal to 
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Similarly the factors for the second and third sides of the sample are determined:  
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Let us determine the generalized factor for shear waves: 
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It should be noted that for a large number of rocks the anisotropy factors will 

most likely be evaluating ones, since anisotropic crystalline rocks, as a rule, are 
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heterogeneous in their elastic properties. It is impossible to evaluate their 
heterogeneity degree a priori in every specific case. On the other hand, a strict 
approach requires that the directions along which the values of Vij are measured be 
close to the directions along which the elastic symmetry elements pass. To use the 
expressions (6.13-6.19) correctly it is necessary that the symmetry of the medium 
being evaluated is not lower than an orthorhombic one.  
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7. ACOUSTOPOLARISCOPY OF SOME ROCK FORMING MINERALS 
 

7.1. Peculiarities of elastic properties of rock forming minerals 
 

As is known, mineralogists have at their disposal a splendid reference book (in 
terms of data completeness) on mineral optic properties by W.E. Tröger [1959]. As to 
mineral elastic properties, such a reference book has not been created yet. To our 
mind, the reason for that is insufficient development of experimental equipment. 
Elastic properties of the lowest symmetry minerals are described by a tensor of the 
fourth order. This arises considerable complexity when analysing results of 
experimental observations. It is also known that mineral optic properties are described 
by a tensor of not higher than the second order. At the same time, elastic properties of 
ore forming minerals have great influence on some natural processes. With the advent 
of a new investigation method - acoustopolariscopy [Gorbatsevich, 1995] an actual 
possibility of creating a reference book similar to that by W.E. Tröger has appeared. 
The reference book might have included the data on fine peculiarities of elastic 
properties of rock-forming minerals.  

The study of formation regularities of elastic-anisotropic properties and non- 
elastic effects of minerals and mineral formations is a basic scientific problem. This 
problem is related to the problem of thermodynamic balance of a mineral grain in a 
paragenetic ensemble of other grains in a crystalline rock during metamorphic 
transformations [Saxena, 1973]. For instance, the existing method of dynamic 
analysis of orientation of palaeostress field components during metamorphic 
processes is based on the study of oriented arrangement of crystallographic and more 
often optic axes in minerals. That is the essence of the microstructural method. 
Recently on the basis of this and other methods it has been established that elastic-
anisotropic properties of mineral grains make the greatest impact on the orientation of 
the grains' crystallographic axes [Brace, 1960; Kozhevnikov, 1982; Kazakov, 1987]. 
Their orientation is also subject to the principle of free energy minimum, which is a 
consequence of the theorem of the change in thermodynamic potential of an 
anisotropic body in the field of mechanical stresses. As applied to mineral grains of a 
polymineral rock it is formulated in the following way: in greatly deformed rocks the 
direction, in which the constant value of mineral compliance is maximum, turns out to 
be in the direction of the greatest component of the palaeostress field [Delitsyn, 
1985]. 

There are some minerals (biotite, phlogopite, muskovite etc.) in which the 
orientation of crystallographic and elastic symmetry axes is very close or coincides. In 
other minerals (quartz, calcite, diopside, amphibole, plagioclase etc.) the orientation 
of crystallographic axes may diverge from the orientation of elastic symmetry axes 
and respectively from the spatial location of the elasticity modulus greatest (least) 
value [Brace, 1960; Kazakov, 1987; Alexandrov & Prodaivoda, 2000].  

What is more, the angles between peculiar orientations and crystallographic axes 
depend on the mineral modification and its composition. Peculiar orientations are 
those where Sαβ, (Cαβ) values are extreme. For instance, for quartz of different 
modifications (α, β) these angles vary in the range of ~30o to ~70o [Brace, 1960; 
Sobolev et al., 1964]. The same angles for amphiboles and plagioclases as well as 
elasticity characteristics Sαβ, Cαβ, depend on their composition [Kazakov, 1987]. 

At present information on orientation of elasticity axes and spatial location of the 
greatest (least) values of elasticity modulus for a large number of rock forming 
minerals are scarce. So we have carried out acoustopolariscopy of some widespread 
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rock forming minerals. Below some initial results of this investigation are presented. 
Certainly, this study has not approached solving the problem to the extent it has been 
solved in W.E.Tröger's book in relation to minerals optical properties. Our study is 
the initial stage on this way.  

 
7.2. Minerals of higher and medium syngony 

 
As is known, mineral syngonies are subdivided into three categories: higher, 

medium and lower [Geological dictionary, 1973]. The cubic syngony belongs to the 
higher category that has the greatest number of elastic symmetry elements among 
other homogeneous ordered anisotropic media. Hexagonal, tetragonal and triclinic 
symmetry types pertain to anisotropic media of the medium category [Berry et al., 
1983]. 

As to cubic symmetry media we have performed acoustopolariscopy of minerals 
analcite, garnet halite and pyrite (Fig. 7.1, Table 7.1). The same determinations have 
been done for the group of minerals of medium syngony: apatite (hex.), nepheline 
(hex.), tourmaline (trig.) and quartz (trig.) - see Table 7.2. 

First we have taken mineral samples of the suitable size (no less than 10х10х10 
mm3) and quality (the lack of fractures, high homogeneity). The samples were made 
in the form of a cube so that the main crystallographic axis of the crystal passed in 1-
1' direction, Fig. 5.1. 

At the first stage 
acoustopolariscopy of the samples 
was conducted at parallel 
polarization vectors (VP position). 
At the second stage the transducers' 
polarization vectors were set at the 
right angle (VC position). For some 
mineral samples acoustopolariscopy 
was performed at different 
frequencies. Accordingly, we have 
used the acoustopolariscopes in 
which the transducers having 
natural frequencies of 0.78, 1.26 
and 2.67 MHz were set. The 
measurements were made on all the 
three pairs of the cubic sample 
sides. On each of the three pairs we 
have measured the values of mutual 
angles between the projections of 
symmetry elements (Table 7.1). 
Then we have determined the 
LAAA index D (Table 7.2).  

The acoustopolarigrams of 
mineral samples of cubic syngony, 
Fig. 7.1, show that the shape of VP 
diagrams is rather strongly 
influenced by the crystal internal 
defects.  

The VC diagrams for pyrite 

Fig. 7.1. Acoustopolarigrams of the mineral 
samples analcite (a), halite (b), garnet (c) and 
pyrite (d). 
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(Fig. 7.1d) allow one to distinguish the orientations of the symmetry elements 
projections on all three sample sides. As for other mineral samples, distinguishing 
these orientations presents a challenge due to the VC diagrams small size. But this can 
be done if this determination is made 
by the so-called reverse 
acoustopolarigrams (Fig. 7.2). The 
reverse acoustopolarigrams can be 
obtained if in the process of 
acoustopolarization measurements all 
amplitudes are normalized by the 
minimum amplitude received at the 
crossed polarization vectors of the 
source and receiver of shear waves. 
On sides 1 and 2 of the analcite 
sample the orientations of the 
symmetry elements projections 
passing through the maxima of the 
reverse diagrams amplitudes can be distinguished rather easily (Fig. 7.2a). 

The measurements of the angles between the symmetry elements projections, 
presented in Table 7.1, have been performed by the reverse acoustopolarigrams. 
These angles, for instance, for analcite at the frequencies f0 = 1.67 and 2.67 MHz are 
the averages of two measurements. The angles for pyrite presented in Table 7.1 are 
the averages of three measurements. The absence of the data in some cells of Table 
7.1 or their insufficient accuracy can be explained by heterogeneities and foreign 
inclusions in the structure of natural mineral samples. 

Table 7.1 
 
Mutual angles between the projections of elastic symmetry elements in the samples of 
some rock forming minerals of higher syngonies. 
 

Side 1 Side 2 Side 3 № 
№ 

Mineral  Sample 
 

Syn-
gony 

Expe-
ri-
ment 
№ 

f0, 
MHz α1  

 

α2  α1 α2. α1. α2. 

1 Anal-
cite 

An-98-1 Cub. 1, 2 1.26 80 100 115 ~65 85 95 

2 Anal-
cite 

An-98-1 Cub. 1, 2 2.67 ~107 ~73 100 ~80 ~93 ~87 

3 Halite Ga-1-5 Cub. 1 2.67 ~95 ~85 ~73 107 104 76 
4 Garnet  Cub. 1 1.26 - - ~90 ~90 - - 
5 Pyrite P-001 Cub 1 0.78 79 101 99 81 - - 
6 Pyrite P-001 Cub. 1-3 2.67 82 98 92 88 86 94 

Notes: α1, α2  are represented in degrees. 
 
For all the samples of cubic syngony presented in Table 7.2 manifestations of the 

LAAA effect are comparatively weak. The index D in analcite increases, on the 
average, with the rise in the impact frequency. 

At f0 = 2.67 MHz frequency a plane type of LAAA is detected in the sample (see 
point 2.4). Pyrite exhibits weak LAAA which can most likely be explained by an 
imperfect crystal structure.  

Fig.7.2. Reverse acoustopolarigrams for 
analcite (a) and halite (b). 
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The results of the determinations on the minerals of medium syngony - crystals of 
apatite, nepheline, quartz and tourmaline are presented in Fig. 7.3-7.6 and Tables 7.3 
and 7.4. 

Table 7.2. 
 

Linear acoustic anisotropic absorption indexes in the samples of some rock forming 
minerals of cubic symmetry. 
 

№ № Mineral  Sample  Syn-
gony 

Expe-
ri-
ment 
№ 

f0 , 
MHz 

D1   D2 D3 Notes 

1 Analcite An-98-1 Cub. 1, 2 1.26 0.10 0.055 0.074  
2 Analcite An-98-1 Cub. 1, 2 2.67 0.06 0.022 0.30 P2-3 
3 Halite Ga-1-5 Cub. 1 2.67 0.21 0.18 0.070  
4 Garnet G-1 Cub. 1 1.26 0.13 0.11 0.13  
5 Pyrite P-001 Cub. 1 0.78 0.14 0.076 0.048  
6 Pyrite P-001 Cub. 1, 2 2.67 0.06 0.043 0.030  
Notes: Р2-3 – LAAA plane of structural elements passes through the directions 2-2’ and 3-3’, 
see Fig. 5.1 
 

 
The apatite crystal has been selected from the skarns of the Dashkesansky iron 

ore deposit. It was a well cut crystal, formed by the combination of two hexagonal 
prisms, hexagonal pyramids and a pinacoid. In the directions parallel to the sides 
(0001) and (1010) weak hair-like microcracks of imperfect cleavage have been 
detected in the crystal. The sample prepared for acoustopolariscopy was cut from the 
crystal central part in the shape of a rectangle prism with a 12х12 mm base and 15 mm 
edge oriented parallel to the crystallographic axis L6 in apatite. 

Acoustopolariscopy of apatite samples was performed several times and at 
various frequencies, see Tables 7.3 and 7.4, Fig. 7.3 and 7.4. The sample A-1 diagram 
for the first side was obtained in the axis direction [0001], Fig. 7.3a. As follows from 
the reverse diagrams, Fig. 7.4, the projections of the elastic symmetry elements are at 
a right angle. They are virtually normal to the sample sides. In the direction 3-3', on 
the diagram obtained at the frequency 1.26 MHz (Fig. 7.4a), the projections of the 
elastic symmetry elements are not practically conspicuous. But for the sample A-1-3, 
whose diagrams were obtained at 2.67 MHz frequency (Fig. 7.3b), revealing the 
orientation of the projections of elastic symmetry elements presents no problems.  

A comparison of Fig. 7.3a and 7.3b enables one to notice that the VC diagrams, 
especially side 3 at a higher frequency, allow easier distinguishing of symmetry 
elements orientation. At 2.67 MHz frequency the apatite sample exhibits an 
orthorhombic symmetry type. An analysis of the data from Table 7.3 permits noticing 
that the values of angles between the projections of elastic symmetry elements range 
from 81o to 99o when their orientation is revealed with confidence. No frequency 
dependence of these angles has been noticed.  

In the apatite samples (Table 7.4) an essential manifestation of the LAAA effect 
has not been detected. The maximum values of D do not exceed 0.14. At f0 = 1.26 
MHz in the sample A-1 a linear type of LAAA (L2) is detected as well as at f0 = 2.67 
MHz in the sample A-1-3 (L1). The nepheline sample (Не-005, f0 = 2.67 MHz), 
whose acoustopolarigrams are presented in Fig. 7.3c, is virtually a transverse-
isotropic medium. Its symmetry axis passes along the normal to side 2. The reverse 
acoustopolarigram allows clear-cut detecting of elastic symmetry elements projections 



 66

on sides 1 and 3 (Fig. 7.4b). The mutual 
angles between the elastic symmetry 
elements in the nepheline samples are in 
the range of 85-95o (Table 7.3). 

In the nepheline samples (Table 7.4) 
at low frequencies (f0 = 0.78-1.26 MHz) 
the LAAA index may reach medium and 
high values. For instance, the maximum 
values of D are 0.25-0.62. In nepheline a 
linear type of LAAA has been registered 
at f0 = 0.78 MHz frequency (samples Не-
005, Не-008) and a plane type at f0 = 
1.26 MHz frequency (sample Не-008), 
the plane passing through sides 1 and 3. 

In the acoustopolarigrams of the 
tourmaline sample Р-011 (Fig. 7.3d, 
7.4c) a simultaneous manifestation of 
two effects - LAAA and depolarization 
of shear waves (DSW) has been 
registered. The LAAA effect is mainly 
registered on sides 1 and 3. At f0 = 1.26 
MHz the sample shows a linear (L2) 
type of LAAA (Table 7.4). 

At f0 = 2.67 MHz a combination of linear and plane types is exhibited where 
elongated elements of the media are oriented along side 2 and the plane passes 
through sides 1 and 2. The DSW effect is most conspicuous on side 2. It means that in 
the planes parallel to side 2 a fan pattern of the medium structural elements 
arrangement is observed in the tourmaline sample (see points 3.1 and 3.2). 

 
Table 7.3. 

 
Mutual angles between the projections of elastic symmetry elements in the samples of 
some rock forming minerals of medium syngonies. 
 

 
Notes: α1, α2  are represented in degrees. 

Side 1 Side 2 Side 3 № 
№ 

Mineral 
 

Sample  
 

Syn-
gony 

Expe-
ri-
ment  
№ 

Fre-
qu-
ency, 
MHz 
 

α1 
. 

α2  
 

α1   
 

α2  
 

α1 
 

α2  
 

1 Apatite А-1 Hex. 1, 2 1.26 85 95 90 90 91 89 
2 Apatite А-1 Hex. 1 2.67 96 84 91 89 103 ~77 
3 Apatite А-1-3 Hex 1 0.78 94 86 81 99 ~76 104 
4 Apatite А-1-3 Hex. 1, 2 2.67 93 87 90 90 90 90 
5 Apatite А-006 Hex. 1 2.67 97 83 93 87 ~94 ~86 
6 Nepheline Не-3 Hex. 1, 2 2.67 90  90 - - 85 95 
7 Nepheline Не-005 Hex. 1 0.78 89 91 99 81 100 ~80 
8 Nepheline Не-005 Hex. 1 2.67 89 91 - - 93 87 
9 Nepheline Не-008 Hex. 1 0.78 90 90 86 94 90 90 
10 Nepheline Не-008 Hex. 1, 2 1.26 103 ~77 95 85 89 91 
11 Тourmaline Р-011 Trig. 1, 2 2.67  86 94 - - 98 82 

 c) 

 d) 

Fig. 7.3. Acoustopolarigrams for: apatite at 
1.26 MHz (a), apatite at 2.67 MHz (b), 
nepheline (c) and tourmaline (d). 
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It is worth noting that 
tourmaline exhibits strong 
pleochroism in optics as well. The 
symmetry elements in the 
tourmaline sample are detected 
only on sides 1 and 3. Their mutual 
angles are in the range of 82-98o 
(Table 7.3).  

The acoustopolariscopy of a 
quartz synthetic sample (sample 
Qu-11) was performed most 
thoroughly, the procedure and 
defining the arrangement of elastic 
symmetry elements with respect to 
the sample crystallographic axis 
[0001] being performed 4 times. 
The quartz sample prepared for 
measurements had the shape of a 
cube with a 4 cm edge. It has been 
cut so that its crystallographic axis [0001] is perpendicular to side 1 and, accordingly, 
parallel to the direction 1-1' with a precision of ±1° (Fig. 7.5a). 

 
Table 7.4. 

 
Indexes of linear acoustic anisotropic absorption in the samples of some rock forming 
minerals of medium syngonies. 
 

 
 
 
 

№ 
№ 

Mineral  Sample  Syn-
gony 

Ex-
peri-
ment 
№ 

Fre-
quen-
cy, 
MHz 

D1   D2 D3 Notes 

1 Apatite А-1 Hex.. 1, 2 1.26 0.045 0.01 0.08 L2 
2 Apatite А-1-3 Hex. 1 0.78 0.020 0.029 0.10  
3 Apatite А-1-3 Hex. 1, 2 2.67 0.032 0.09 0.033 L1 
4 Apatite А-006 Hex. 1 2.67 0.04 0.14 0.10  
5 Nepheline Не-3 Hex. 1 2.67 0.021 0.00 0.00  
6 Nepheline Не-005 Hex. 1 0.78 0.038 0.25 0.32 L1 
7 Nepheline Не-005 Hex. 1 2.67 0.048 0.00 0.022  
8 Nepheline Не-008 Hex. 1 0.78 0.10 0.072 0.14 L2 
9 Nepheline Не-008 Hex. 1, 2 1.26 0.072 0.18 0.62 P1-3 
10 Quartz Qu-11 Trig. 3, 4 0.6 0.00 0.14 0.06  
11 Quartz Qu-11 Trig. 1, 2 1.2 0.00 0.04 0.36  
12 Tourmaline Р-011 Trig. 1, 2 1.26  0.23 0.06 0.59 L2 

13 Tourmaline  Р-011 Trig. 1, 2 2.67  0.52 0.14 0.54 L2, P1-2 

Note: L - linear, P - plane type of LAAA manifestation; directions 1-1’, 2-2’, 3-3’ along which 
the effect is exhibited, see Fig. 5.1 

Fig.7.4. Reverse acoustopolarigrams for apatite 
(a), nepheline (b) and tourmaline (c). 
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Figure 7.6 shows the acoustopolarigrams of four successive determinations 
obtained in the cube's three mutually perpendicular directions 1-1', 2-2’, 3-3’. The 
acoustopolarigrams (Fig. 7.6а, 7.6b, Table 7.5, measurement numbers 1 and 2) were 
obtained with the recording device UD-2-12, whose amplifier has a resonance 
frequency of 1.2 MHz and device DUK-66 PМ, with a frequency of 0.6 MHz (Fig. 
7.6c, 7.6d, Table 7.5, measurement numbers 3 and 4).  

In the direction 1-1' with parallel polarization vectors (VP position) three petal 
acoustopolarigrams were obtained. The 
maximum amplitude in each petal was 
registered in the directions coinciding with 
the position of the elastic symmetry planes 
passing through the axis [0001]. With the 
crossed polarization vectors (VC position) 
the diagrams with 6 petals were obtained.  

The results of the measurements of the 
VC minima angular locations regarding the 
orientation of the sample sides are presented 
in Fig. 7.5. In the direction 2-2' VP 
acoustopolarigrams represent a four-petal 
figure that is typical of media with two 
crossing symmetry elements. The VC 
diagrams testify that.  

The position of minima in the VC 
diagrams shows that the crystallographic axis 
(direction 1-1') and elastic symmetry 
elements form a certain angle (Table 7.5). 
The VP acoustopolarigram obtained in the 
direction 3-3' indicates a rather complicated 
nature of propagation of polarized shear 
waves in the elastic-anisotropic medium of 
the sample. However, by the VC diagram minima one may single out a spatial 
orientation of elastic symmetry two elements which arrangement is close to the 
orientation of the crystallographic axis (direction 1-1') and the axis perpendicular to 
the crystallographic one (Table 7.5).  

Fig. 7.5. Orientation of elastic symmetry elements in the synthetic quartz sample 
according to the acoustopolariscopy data (a) and schematic formation of 
complementary sides along the normal to directions 301 and 103 (b).  

 
Fig.7.6. Acoustopolarigrams of the 
synthetic quartz cubic sample obtained 
at f0 =1.2 MHz (a, b) and f0 =0.6 MHz 
(c, d) frequencies. 

 

 

 

  a)

 b)

 c)

 d)
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The data from Table 7.5 also show that the arrangement of the symmetry 
individual elements vary from measurement to measurement by two and more degrees 
with regard to successive removing and a new setting the sample on the 
acoustopolariscopy tables. In this case the operation of the device with another 
resonance frequency of the amplifier affects the outlines of the VC and VP 
acoustopolarigrams. However, the position of the VC minima in relation to the 
directions 1-1', 2-2' and 3-3', as a whole, remains stable. Judging by the medium 
values from the set of measurements 1

6
1
1 ϕϕ −  on acoustopolarigrams, one of the quartz 

planes of the elastic symmetry along the direction 1-1' forms an angle 1
1ϕ

 = 30o, the 
other - 1

3ϕ
 = 144o and the third 1

5ϕ
 = 266o with the direction 2-2'. Their mutual 

angles are θ1 = 1
1

1
3 ϕϕ −  = 144o; θ2 = 1

3
1
5 ϕϕ −  = 122o; θ3 = 1

5
1
1 ϕϕ −  = 124o. 

On side 2 the average inclination angle of a symmetry element is 02
31 56=−ϕ  and 

02
42 150=−ϕ  with the direction 3-3'. Respectively, the discrepancy with the 

crystallographic axis [0001] orientation of these elements is 02
31 34=−ψ  and 

02
42 60=−ψ . From the measurements on side 3 we obtain the angles 03

31 5=−ϕ  and 
03

42 96=−ϕ . The discrepancy with the axis [001] orientation is, accordingly, 
03

31 85=−ψ  and 03
42 6=−ψ . In Fig.7.5a the elastic symmetry elements are removed on 

the sample sides. The Figure shows the spatial discrepancy between the axis [001] 
orientation and elastic symmetry elements. 

At the next stage we measured phase velocities Vp and Vs along the directions 1-
1', 2-2', 3-3' according to the diagram in Fig.7.5a. For this purpose additional parallel 
to each other and perpendicular to the directions [301] and [103'] sides were formed 
as shown in Fig.7.5b. The measured Vp and Vs are given in Table 7.5. Using these 
data, in the plane of side 2 Vp, Vs, and Vs⊥ indicatrixes (Fig.7.7) were built with the 
polarization vector parallel and perpendicular to plane 2 accordingly.  

According to Table 7.5 and Fig. 7.5b the direction [301], in which the value 
Vpmax = 7.07 km/s has been measured, makes an angle of 60o with the axis [0001]. It is 
well known that the elasticity modulus (constant) [Bezukhov, 1968] 

 
Сϕ = ρf(V2

pϕ),                                                 (7.1) 
 
where ρ is density, V2

pϕ  is phase velocity. 
Thus, the modulus (constant) of longitudinal elasticity in the direction [301] takes 

the maximum value. The direction [301] does not coincide with the crystallographic 
axis [0001] orientation. That is the reason for an angular divergence between the 
palaeostress orientation and the axis [0001] in the quartz grains of a metamorphosed 
rock [Kozhevnikov, 1982; Gorbatsevich & Basalayev, 1993].  

We should note that the direction 3-3' in which the minimum value Vрmin= 5.78 
km/s was detected is not perpendicular to the direction [301]. The maximum value Vs⊥ 

= 4.89 km/s is in the direction [103'] and the minimum value Vs⊥  = 3.26 km/s is in the 
direction [301]. The values Vso contrast in different directions is not great, it is in the 
range of Vso = V21 = 4.33 km/s (direction 1-1') to Vso = V103 = 3.23 km/s. 
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Table 7.5. 
 

Determined arrangement of symmetry elements in the sample of synthetic quartz. 
 

Mea-
sure- 
ment  
№ 

 
Side 1, angle 

 
Side 2, angle 

 
Side 3, angle 

 1
1ϕ  1

2ϕ  1
3ϕ  1

4ϕ  1
5ϕ  1

6ϕ  2
1ϕ  2

2ϕ  2
3ϕ  2

4ϕ  3
1ϕ  3

2ϕ  3
3ϕ  3

4ϕ  
1 39 79 149 209 269 319 54 144 244 324 3 103 183 283 
2 43 83 153 203 273 323 58 148 238 318 5 105 195 265 
3 17 87 137 207 262 327 50 150 230 330 5  90 190 275 
4 21 81 136 201 261 331 60 160 235 330 7 87 177 263 
Ave-
rage 

30 82 144 205 266 325 56 150 237 326 5 96 186 271 

Kvr, 
% 

7.1 1.6 4.7 2.0 3.2 2.9 2.5 4.0 3.2 3.2 1.0 5.0 4.4 5.2 

Vs,  4.33 4.30 4.33 4.31 4.33 4.30 4.89 3.26 4.81 3.25 3.64 4.00 3.64 4.09 
Note: Vp:  V11 = 6.32,  V301 = 7.07,  V22 = 5.77,  V103 = 6.26,  V33 = 5.78 km/s 
Vs:  V12 = 4.32,  V13 = 4.30,  V21 = 4.33,  V23 = 3.64,  V31 = 4.00,  V32 = 3.64 km/s 
 

The obtained indicatrix (Fig. 7.7) on the whole, is similar to the sections of the 
phase Vp surface by the plane (Table 7.5). Like data have been published before 
[Silayeva & Delitsyn, 1970; Farnell, 1961]. 

Thus, the acoustopolariscopy of synthetic quartz in the direction of the triple 
crystallographic axis fixes the projections of the three symmetry planes (VC diagram) 
that are turned relative to each other by an angle of 60o. The arrangement of these 
planes can be determined with a 
comparatively high precision, as follows 
from Fig. 7.6a. 

The data presented in Fig. 7.6 and Table 
7.5 show that the acoustopolariscopy method 
allows determining the spatial orientation of 
elastic symmetry elements in a mineral 
without measuring Vp and Vs. The obtained 
Vij values, as a whole, agree with the re-
counted data from the reference books 
[Belikov et al., 1970; Aleksandrov and 
Prodaivoda, 2000]. But the constant values of 
quartz elasticity in the reference books have 
been measured along the crystallographic 
axes and do not reflect the greatest and least 
elasticity values for this mineral. The quartz 
sample (Fig. 7.5), judging by the D values, 
exhibits a comparatively low degree of 
LAAA. The LAAA degree depends on the 
sounding vibration frequency. As indicated 
above, the nepheline index D is also 
frequency dependent.  
 
 

Fig. 7.7. Indicatrix of Vs in the quartz 
plane 2-2': 1 - Vp, 2 - Vs⊥ with the 
polarization vector along the normal to 
the plane 2-2'; 3 - Vso with the 
polarization vector in the plane 2-2'. 
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7.3. Minerals of lower syngonies 
 
The lower syngony category comprises media of orthorhombic, monoclinic and 

triclinic symmetry systems. Figure 7.8 gives acoustopolarigrams for aragonite 
(rhomb.), staurolite (rhomb.), diopside (mon.) and amphibole (mon.). The aragonite 
crystal prepared for tests (sample Х2-7, f0 = 0.78 MHz) has a hair-like structure and 
perfect cleavage. The acoustopolarigrams point, as a rule, to the LAAA presence and 
heterogeneous structure of the samples at our disposal. In the sample X2-7 a great 
manifestation of the LAAA effect was detected on sides 2 and 3, Fig. 7.8a. The 
reverse acoustopolarigrams of the same sample (Fig. 7.9) enable one to determine the 
symmetry elements arrangement on sides 2 and 3 rather precisely. The mutual angles 
between those elements, according to a number of determinations, are in the range of 
82-98o (Table 7.6). Unlike the sample 
X2-7, the LAAA degree in the sample 
X2-11 is much lower (Table 7.7). The 
data from Table 7.7 indicate that 
aragonite exhibits both linear and plane 
types of LAAA.  

The staurolite (sample St-1-1), 
whose acoustopolarigrams were obtained 
at f0 = 1.26 MHz (Fig. 7.8b) has a rather 
homogeneous structure. The orientation 
of symmetry elements is clearly seen in 
its all three reverse acoustopolarigrams 
(Fig. 7.9b). The mutual angles between 
the elements on side 1 are 85o and 95o, 
on other sides they do not virtually differ 
from a right angle (Table 7.6). 

The sample St-1-1 exhibits a 
relatively low degree of LAAA of a 
plane type (Table 7.7). The plane along 
which the least absorption is observed 
passes through directions 2 and 3. As is 
well known, staurolite is characterized 
by a total absence of cleavage (Tröger, 
1959) and this is the reason for a low 
degree of LAAA manifestation in it.  

The acoustopolariscopy of a 
diopside crystal (sample D-009, f0 = 2.67 MHz) shows a much more intricate type of 
elastic anisotropy (Fig. 7.8c). If the first two directions (along the normal to sides 1 
and 2) point to the presence of two symmetry elements forming virtually a right angle, 
the third side in the VC diagram shows three projections of the elements that form 
mutual angles of 83, 56 and 41o (Table 7.6). The symmetry elements orientation on 
the third side was determined at f0 = 2.67 MHz. At f0 = 1.26 MHz we failed to do that. 
The mutual angles between the symmetry elements on the first side may not differ 
from a right angle, but on the second side their values are 64-80o and 100-116o. 

Diopside showed dependence of the LAAA effect on the vibration frequency 
(Table 7.7). At f0 = 1.26 MHz the LAAA index measured on sides 2 and 3 is more 
than twice higher than that at f0 =2.67 MHz. As the frequency increases the plane 
LAAA of the P2-3 type goes over into linear L1.  

Fig. 7.8. Acoustopolarigrams of aragonite (a), 
staurolite (b), diopside (c) and amphibole (d). 
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The acoustopolariscopy results 
(sample A-030) for amphibole 
(arfvedsonite) are given in Fig. 7.8d 
and Tables 7.6 and 7.7. The 
acoustopolarigrams were obtained at 
f0 = 0.78, 1.26 and 2.67 MHz. The 
tests at all those frequencies showed a 
rather high manifestation of the 
LAAA effect. The index D at f0 = 
1.26, 2.67 MHz at least at one side 
reaches 0.8-0.9. As a rule, both linear 
and plane LAAA manifest themselves 
at the same time. Thus, it may be 
concluded that the elements of the 
mineral chain structure are not 
isometric in the cross section.  

The mutual angles of the 
symmetry elements in an amphibole 
crystal vary from 85 to 95o. No 
dependence of these angles on the 
vibration frequency has been 
detected.  

The nephrite sample Nefr-033 
prepared for the measurements was 
rather homogeneous, it had no foreign inclusions. Respectively, the 
acoustopolarigrams shape of this sample is rather close to the theoretically predicted 
ones, Fig. 7.10a (see point 1.4). The remarkable homogeneity of the sample Nefr-033 
is confirmed by the reverse acoustopolarigrams shape (Fig. 7.9c). The mutual angles 
between the symmetry elements on side 2 greatly differ from a right one and are 79-
101o (Table 7.6). This nephrite sample is characterized by the LAAA low degree 
(Table 7.7) and combination of the linear and plane types of its manifestation (f0 = 
0.78 MHz). The sample Ne-3 has almost the same characteristics as Nefr-033. Despite 
a high homogeneity of the samples Ne-3 and Nefr-033 they are most likely 
monomineral and not monocrystalline formations. 

Acoustopolarization measurements of orthoclase were performed on two 
samples, at some frequencies being repeated 2 and 3 times (Tables 7.6 and 7.7). The 
mutual angles between the symmetry elements in the sample О-15b at f0 = 2.67 MHz 
on all the three sides do not virtually differ from a right one. But at f0 = 0.78 MHz on 
side 1 of the same sample 78-102o angles have been detected. In the sample О-19b the 
same angles have been registered on side 1 (f0 = 0.78 MHz) and side 3 (f0 = 0.78 
MHz).  

Orthoclase as well as amphibole exhibits the LAAA effect of a high grade, 
especially at f0 = 1.26 and 2.67 MHz (Fig. 7.10b, Table 7.7). A comparatively 
identical degree of this effect is registered on both samples - О-015b and О-019b. 

As a rule on these samples a combination of the LAAA plane and linear types is 
observed. On the sample О-019b as the frequency increases a transition of directions 
(in which the LAAA linear and plane types are registered) is observed. For instance, 
at f0 = 0.78 MHz the mineral linear structures that are oriented along the normal to the 
first side have been revealed (Table 7.7). At f0 = 1.26 MHz the mineral linear 
structures oriented to the first side preserve their influence, but in this case the plane 

Fig. 7.9. Reverse acoustopolarigrams of 
aragonite (a), staurolite (b), nephrite (c) and 
microcline (d). 
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passing through directions 1-3 manifests itself. At f0 = 2.67 MHz the linear structures 
in direction 2 and the plane passing through directions 2 and 3 reveal themselves.  

 
Table 7.6. 

 
Mutual angles between the projections of elastic symmetry elements in rock forming 
minerals of lower syngonies. 
 

Side 1 Side 2 Side 3 Expe-
riment  
№ 

Mineral  Sample  Syn-
gony 

Fre-
quen-
cy, 
MHz 

α1 α2 α1 α2 α1 α2 

1-3 Aragonite Х2-7 Rho-
mbic 

0.78 ~91 ~89 92 88 83 97 

1,2  Х2-11  0.78 86 94 91 89 97 83 
1 Staurolite St-1-1  1.26 95 85 91 89 90 90 
1 Amphibole А-030 Mon. 0.78 - - 96 84 93 87 
1, 2  А-030 . 1.26 95 85 ~84 ~96 ~84 ~96 
1-3  А-030  2.67 91 89 ~96 ~84 93 87 
1 Diopside D-009  1.26 96 84 116 ~64 - - 
1, 2  D-009  2.67 90 90 100 80 83, 

56, 
41 

- 

1 Nephrite Ne-3 . 1.26 99 81 83 97 - - 
1  Nefr-033  0.78 93 87 95 85 92 88 
1  Nefr-033  2.67 91 89 101 79 91 89 
1 Orthoclase O-015b  0.78 78 102 86 94 - - 
1-3  O-015b  2.67 90 90 91 89 89 91 
1  O-019b  0.78 90 90 95 85 101 79 
1, 2  O-019b . 1.26 79 101 - - 89 91 
1 Spodumen SP-1-1 .  90 90 91 89 - - 
1-3 Microcline XIX-1-b  Tricl. 0.78 - - 91 89 86 94 
1  М-1   0.78 87 93 87 93 86 94 
1  М-1   1.26 - - 86 94 97 83 
1  М-1   2.67 92 88 - - 95 85 
1  М-2   0.78 97 83 88 92 86 94 
1  М-2   1.26 ~83 ~97 ~84 ~96 97 83 
1, 2  М-2   2.67 89 91 90 90 87 93 

 
Notes: α1, α2  are represented in degrees. 

 
The mineral structural elements and cleavages are likely to respond to the 

frequency increase. For instance, as the frequency whose wave length will be 
comparable with a structural element or cleavage approaches the vibration, absorption 
will be maximum. T.M. Proctor [1971] observed this phenomenon on artificial media. 

Microcline samples XIX-1-b, М-1 and М-2 were made so that the 
crystallographic axis [001] coincided with the normal direction 1-1' to a cube side and 
the axis [010] - with the direction 2-2'. The acoustopolarigrams obtained at the 
crossed polarization vectors show that the orientation of the elastic symmetry element 
projections is virtually perpendicular to the sample sides (Fig. 7.10c, 7.9d, Table 7.6). 
The projections of the elastic symmetry elements are observed in all the three 
mutually perpendicular directions.  
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         Table 7.7. 
 

Indexes of linear acoustic anisotropic absorption in the samples of some rock forming 
minerals of the syngony lower category. 
 

Expe-
riment 
№ 

Mineral Sample Syn-
gony 

Fre-
quen-
cy, 
MHz 

D1   D2 D3 Notes 

1, 2 Aragonite Х2-7 Rhom
-bic 

0.78 0.22 0.72 0.66 L1, P1-3 

1, 2  Х2-11  0.78 0.10 0.14 0.16 L3, P2-3  
1 Staurolite St-1-1  1.26 0.022 0.13 0.18 P2-3 
1 Amphibole А-030 Mon. 0.78 0.55 0.14 0.29 L1, P1-2  
1, 2  А-030  1.26 0.34 0.64 0.89 L1, P1-3 
1-3  А-030 . 2.67 0.43 0.57 0.88 L2, P2-3 
1, 2 Diopside D-009  1.26 0.013 0.56 0.66 P2-3 
1, 2  D-009  2.67 0.012 0.20 0.18 L1 
1 Nephrite Ne-3  1.26 0.062 0.034 0.17  
1  Nefr-033  0.78 0.21 0.12 0.22 L1, P1-3  
1, 2  Nefr-033  2.67 0.013 0.083 0.05  
1 Orthoclase O-015b  0.78 0.44 0.24 0.14 L2, P1-3 
1, 2  O-015b  2.67 0.64 0.67 0.45 L3, P1-3 
1  O-019b  0.78 0.054 0.22 0.29 L1 
1, 2  O-019b  1.26 0.33 0.41 0.50 L1, P1-3,  
1-3  O-019b  2.67 0.53 0.61 0.74 L2, P2-3 
1 Spodumen SP-1-1  1.26 0.25 0.11 0.024 P1-3 
1 Microcline XIX-1-b  Tricl. 0.78 0.84 0.87 0.64 P2-3, L3 
1  М-1   0.78 0.27 0.26 0.24 P2-3, L2 
1  М-1   1.26 0.33 0.065 0.72 L2 
1  М-1   2.67 0.42 0.022 0.40 P1-2 
1  М-2   0.78 0.045 0.49 0.47 P2-3 
1  М-2   1.26 0.78 0.11 0.87 L2 
1  М-2   2.67 0.67 0.022 0.44 P1-3 

 
This suggests that microcline has an elastic symmetry of the type not higher than 

orthorhombic. At the same time the mutual angles between the elastic symmetry 
elements just slightly differ from a right one. An overview of the data from Table 7.6 
shows that at all frequencies and on every sample those differences do not exceed 5o. 

The results presented in Table 7.7 testify to a considerable range of the LAAA 
manifestation in microcline. For instance, in the samples M-1 and M-2, (Fig. 7.10c, 
7.10d), whose acoustopolarigrams were obtained at f0 = 1.26 MHz the LAAA effect is 
most conspicuous. For the first, second and third pairs of the sample M-2 sides they 
are D1 = 0.78, D2 = 0.11 and D3 = 0.87 respectively. On sides 1 and 3 of the samples 
at parallel polarization vectors we have detected acoustopolarigrams which diameter 
along direction 2 is considerable and along directions 1 and 3 - small. Judging from 
the direction of the largest diameters of the VP acoustopolarigrams obtained on sides 
1-1' and 3-3', a linear type of this effect L2 has been registered in the samples M-1 
and M-2. 

The most likely explanation for the observed LAAA phenomenon as well as its 
linear type is the following. In the crystallographic axis direction [010] in microcline 
crystals a perfect cleavage is observed, but its plane is parallel to the plane (001). In 
the direction 2-2' the planes of these two cleavage systems and the angle close to a 
right one intersect. For this reason we observe a great manifestation of the LAAA 
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effect in the direction 1-1' from one cleavage and in the direction 3-3' - from the other. 
In the direction 2-2' the signal attenuates to the same extent from both cleavages. That 
is why the degree of LAAA manifestation detected on side 2 is low.  

However, at other vibration frequencies, as with orthoclase samples, changing of 
the LAAA manifestation type and the directions related to this effect occurs (Table 
7.7). For instance, at f0 = 0.78 MHz in the sample XIX-1-b both the plane P2-3 and 
linear L3 types are registered. At f0 = 2.67 MHz in the microcline samples M-1 and 
M-2 the plane type of LAAA is observed - P1-2 and P1-3 respectively. Thus, in 
microcline, as well as in orthoclase, at one frequency the greatest absorption occurs 
on the structural elements of one cleavage, at the other frequency - on the elements of 
another cleavage. A comparatively 
identical absorption on both elements 
takes place at f0 = 1.26 MHz. 

For the first time the LAAA effect 
was found in the rocks from the lower 
section of the Kola Superdeep Borehole 
[Gorbatsevich, 1982]. This effect has 
been detected in 90% of the rock samples 
extracted from the 4.5-12.06 depth range 
[Gorbatsevich & Il'chenko, 1997]. A high 
degree of LAAA in microcline allows 
one to conclude that the presence of this 
effect in crystalline rocks may be caused 
by this mineral contained in the rocks as 
well as by some minerals of the feldspar 
series (oligoclase, orthoclase et al.). 

In scientific literature we have not 
met any information on the LAAA and 
DSW manifestation in minerals. Most 
likely, the manifestation of LAAA and 
pleochroism in minerals are not 
interrelated. For instance, microcline does 
not virtually exhibit pleochroism [Tröger, 
1959]. The results presented in this work 
show possibilities of the 
acoustopolariscopy method in relation to 
investigation of mineral physical properties. On the other hand, these data indicate 
that on the whole a lot of work is to be done for all mineral types.  

The main results of investigation for mineral samples of higher and medium 
syngonies may be stated as follows: 
1. The acoustopolariscopy method permits determining an arrangement and mutual 

angles between the elastic symmetry elements in a mineral with high precision. 
Such determinations are possible for media of cubic syngony as well.  

2. As a rule, the mutual angles between the elastic symmetry elements in the 
samples of measured minerals are close to a right one. The exception is quartz. In 
one of the sections of this mineral three elements of elastic symmetry forming 
mutual angles other than a right one have been observed. 

3. Classes of mineral elastic symmetry may differ from the symmetry classes 
defined by their optical properties. It is indicated by, for instance, determination 

Fig. 7.10. Acoustopolarigrams of nephrite (a), 
orthoclase (b), microcline, sample M-1 (c) 
and microcline, sample M-2 (d). 
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of elasticity parameters for quartz, which support the difference in element 
orientation for crystallographic and elastic symmetry.  

4. In minerals of medium and lower syngonies the LAAA effect is conspicuous. The 
LAAA effect is rather weak in minerals of higher syngony which, most probably, 
is related to the crystal structure defects. In silicate minerals of lower syngonies 
this effect is observed virtually on all samples. In this case LAAA may be 
observed along with pleochroism (tourmaline) or independent of it (orthoclase, 
microcline). In such minerals as amphibole, orthoclase and microcline its 
manifestation is related to cleavage in natural samples.  

5. On some minerals a clear dependence of LAAA and its type on the vibration 
frequency is observed. For instance, in microcline as well as in orthoclase at one 
frequency the greatest absorption occurs on structural elements of one cleavage, 
at another frequency - on the elements of another cleavage. A comparatively the 
same absorption on both elements takes place at f0 = 1.26 MHz. Accordingly, as 
the frequency changes, the LAAA type changes, too. For instance, when the 
absorption on the structural elements of one system prevails, the plane type will 
be observed. When two orthogonal systems of cleavage act, the LAAA linear 
type will be detected.  

6. In one of the sections of the tourmaline sample the acoustopolarigram with the 
clear manifestation of the DSW effect has been registered.  
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8. ACOUSTOPOLARISCOPY OF MONO- AND POLYMINERAL ROCKS 
 

8.1. Manifestation types of the linear acoustic anisotropic absorption effect in 
crystalline rocks 

 
In a sequence of acoustopolariscopy of mono- and polymineral rocks 

[Gorbatsevich, 1995] quite a lot of acoustopolarigrams have been obtained whose 
shapes cannot be explained only by the elastic anisotropy manifestation, Fig. 1.4. 
Some acoustopolarigrams' dissimilarity from theoretical ones can be explained by 
rock heterogeneity. Peculiar shapes of acoustopolarigrams are observed when the 
linear acoustic anisotropic absorption (LAAA) and depolarisation of shear waves 
(DSW) effects are displayed. Our observations confirm that the LAAA effect may be 
presented by two main models - plane and linear, Fig. 2.5. The plane model (I) is 
exhibited in crystalline rocks containing oriented cracks or plane elements (minerals), 
such as mica, talc et al. Other than the first the linear model (II) manifests itself in 
rocks containing linear elongated in one direction, isometric in the cross section 
mineral grains. As follows from the diagrams, Fig. 2.5, the difference of the model I 
medium from that of model II can be established only on the basis of the spatial 
measurements system.  

Fig. 8.1. Acoustopolarigrams: a - talc-phlogopite-tremolite schist (sample 26715); b - 
clinopyroxene amphibolite (sample 24788). Solid line - parallel vectors, dotted line - crossed 
vectors. 

 
The LAAA display by the model I type was detected on cubic sample 26715 of 

talc-phlogopite-tremolite schist. Clearly expressed by phlogopite and talc schistosity 
enabled exact orientation of the sample sides during its preparation. The 
acoustopolarigrams for the three pairs of sides, accordingly in the directions 1-1', 2-2', 
3-3', are given in Fig. 8.1a. In the directions 1-1' (D = 0.83) and 2-2' (D = 0.86) the 
media exhibits a high degree of LAAA. In the direction 3-3' (D = 0.13) the VP 
acoustopolarigram is more isometric. The direction of the greatest transmission on 
side I is oriented to side 2 and on side 2 - to side I.  

The LAAA manifestation by the type of model II was observed on cubic sample 
24788 of clinopyroxene amphibolite. The structure of clinopyroxene amphibolite is 
characterized by clearly visible greatly elongated grains of hornblende. The sample 
sides are formed in such a way that the direction 1-1' coincides with the axes of 
elongated grains. The VP acoustopolarigram obtained in the direction 1-1', Fig. 8.1b, 
showed, accordingly, a low grade of LAAA (D = 0.17). In the directions 2-2' (D = 
0.79) and 3-3'(D = 0.73) the LAAA manifestation is much greater. Both directions of 
the greatest transmission are oriented to side I. Sample 24788 also pertains to highly 
anisotropic media.  

In samples 26715 and 24788 the LAAA manifestation by model I and II types is 
most conspicuous. However, there are some media in which the LAAA manifestation 
is caused by elements of both linear and plane types [Gorbatsevich, 1995]. 

As follows from the observations, the LAAA effect arises in crystalline rocks 

a)
0

b)
0
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when linearly polarized shear waves interact with oriented linear, plane or some other 
heterogeneities. But these may be oriented holes or cracks both filled with, for 
instance, liquid and gas (Fig. 2.3). This effect is exhibited in minerals, rocks, wood 
and plastics [Gorbatsevich, 1999]. To our mind, it may be displayed in metals, 
concrete, ceramics, construction, building and composite materials. 

 
8.2. Cross effect of elastic anisotropy and linear acoustic anisotropic absorption 
with an angular disagreement between their symmetry elements 
 

In rocks elastic anisotropy and the LAAA effect most often manifest themselves 
together [Gorbatsevich & Il'chenko, 1997]. By the results of our observations the 
spatial arrangement of the symmetry elements of elastic anisotropy and linear acoustic 
anisotropic absorption in crystalline rocks do not always coincide. Consider the 
acoustopolarigrams of some rocks, Fig. 8.2.  

Sample 30020 is biotite-
plagioclase gneiss. It has been 
produced from the Kola superdeep 
borehole (SD-3) core extracted 
from a depth of 7959.1 m. 
According to acoustopolariscopy of 
one of its cross-sections, Fig. 8.2a. 
sample 30020 is an anisotropic 
medium with strong LAAA. The 
shape of this cross-section 
acoustopolarigram may be 
compared with the 
acoustopolarigram of the wooden 
plate (Fig. 2.7, 3).  

Sample 27227III of epidote-
biotite-amphibole-plagioclase 
crystalloschist has been produced 
from the SD-3 core recovered from 
a depth of 8017.0 m. The shape of 
the VC acoustopolarigram from one 
of the sample cross-sections, Fig. 
8.2.b, shows signs of the angular 
divergence between the orientation 
of elements of elastic symmetry and 
LAAA - the VC diagram petals are 
not equal in size and area. By the 
VC and VP diagrams shapes one 
may judge that this angular 
divergence is close to the value 
obtained by calculation (Fig. 2.6) 
and on the model (Fig. 2.7) with the angle of directions disagreement between the 
plates τ = 15o. 

Sample 27026III of cummingtonite amphibolite has been cut from the SD-3 core. 
The acoustopolarigram (Fig. 8.2c) of one of its cross-sections shows a strong display 
of the LAAA effect. As in the previous case, the VC diagram petals differ in size and 
area. The shape of the VC diagram is close to that of the diagram obtained on the 

Fig. 8.2. Acoustopolarigrams of one of the cross-
sections of crystalline rock samples. 
a - biotite -plagioclase gneiss (30020); b - 
epidote-biotite-amphibole-plagioclase schist 
(27227Ш); c - cummingtonite amphibolite 
(27026Ш); d - sandstone (1753); e - fine-
psephitic-psammitic andesite-basaltic tuff (1161); 
f - epidote-biotite-plagioclase gneiss (28184). 
Vectors parallel - solid line, vectors crossed - 
dotted line. 
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model with the angle τ higher than 15o, but lower than 30o (Fig. 2.7c). The angular 
disagreement between the symmetry elements of elastic anisotropy and LAAA of the 
sample is reflected in great asymmetry of the petal sizes in the VC acoustopolarigram.  

The acoustopolarigram (Fig. 8.2d) of the sandstone (sample 1753) from the 
borehole 30p1 at the Yarigskoye deposit (Komineft') is characterized by a very large 
amplitude obtained at crossed polarization vectors. It exceeds the amplitude detected 
at the VP position. A similar correlation was obtained for the model 
acoustopolarigram (Fig. 2.7d) at τ = 45о. 

Sample 1161 has been produced from the Ural Superdeep Borehole (SD-4) core. 
Its VC diagram is very elongated (Fig. 8.2e). The lateral petals located along the 
normal to the figure's largest diameter are very small. The shapes of the VC and VP 
diagrams are very close to the calculated ones (Fig. 2.6) and to the shapes obtained on 
the model (Fig. 2.7) at τ = 30o.  

Sample 28184Ш has been produced from the SD-3 core. Its acoustopolarigrams 
are given in Fig. 8.2f. Judging by their shapes the disagreement between the 
symmetry elements of elasticity and LAAA in this sample reaches 75o or 15o, Fig. 2.7.  

Thus, the acoustopolarigrams, Fig. 8.2, show that in natural media a spatial 
orientation disagreement between the symmetry elements of elastic anisotropy and 
LAAA is observed. An indication of this disagreement is asymmetry in the petal sizes 
of the acoustopolarigrams obtained at crossed polarization vectors. Another sign is an 
amplitude enlargement of these petals, sometimes to the sizes exceeding the petal size 
of the acoustopolarigrams obtained at the VP position. As the diagrams, Fig. 8.2, 
analysis shows, by the shapes of the acoustopolarigrams obtained for natural media 
one can judge about the disagreement angles between the symmetry elements of 
elastic anisotropy and LAAA. The presence of such disagreement up to an angle τ = 
30-75о allows one to think that physical grounds of elastic anisotropy and the LAAA 
effect are radically different. The LAAA effect is not only subordinate to the elastic 
anisotropy display in solid bodies.  

This conclusion is also confirmed by the results from the SD-3 samples 
[Gorbatsevich et al., 1992]. During the tests on every side of the cubic sample the 
value of D and the factor of acoustic birefringence BS (6.19) were determined. On 
every side the factor ВS and 
index D express the degree 
of elastic anisotropy and 
linear anisotropic absorption 
of the medium, accordingly. 

Figure 8.3 presents the 
determined index D and the 
factor of acoustic 
birefringence for some 50 
samples produced from the 
SD-3 core The shape of the 
point scattering in Fig. 8.3 
indicates that there is 
virtually no correlation 
between the values of ВS and 
D.  

It should be believed 
that the cross effect of the 
elements of elastic 

Fig. 8.3. Distribution of unit values D - LAAA index and 
birefringence factor B for rocks from the SD-3 section.  
1 - schist, 2 - amphibolite, 3 - biotite gneiss (granite). 
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symmetry and linear anisotropic absorption will be observed as shear waves 
propagate not only in rocks but in layered plastics, composite materials, metal alloys 
and other media with a complicated structure. 

The signs of disagreement between the symmetry elements of elastic anisotropy 
and LAAA can provide additional information on the structure, composition and 
peculiarities of a medium. As we showed above, such signs are the presence of 
asymmetry in the petal sizes in the acoustopolarigrams obtained at the crossed 
polarization vectors and an anomalous enlargement of their amplitude. The 
disagreement signs for the orientation of the symmetry elements of elastic anisotropy 
and LAAA detected in rocks as well as the absence of correlation between the 
anisotropy parameter ВS and the index D allow one to conclude that these effects can 
display themselves independently of one another.  

The spatial function of LAAA, as well as the optical analogue of dichroism 
[Goncharenko et al., 1979], is likely to be described by the tensor of no less than the 
second order. The calculation of the parameters defining an interaction of the two 
tensors - elasticity and absorption - with heterogeneity and symmetry elements that do 
not coincide, is a rather intricate task. However it can be solved experimentally.  

 
8.3. Experimental results of detecting the DSW phenomenon in rocks 

 
During determination of elastic-anisotropic properties of the rock samples 

extracted from the Kola (SD-3) and Ural (SD-4) superdeep boreholes and from the 
wells at Ukhta oil fields and some others by the acoustopolariscopy method a rather 
frequent display of the depolarization of shear waves (DSW) effect was observed. Fig. 
8.4 gives acoustopolarigrams for six samples of sedimentary and crystalline rocks in 
which this effect was detected.  

The measurements were performed on cubic samples in three mutually 
perpendicular directions. Accordingly, acoustopolarigrams 1, 2 and 3 (Fig. 5.5) were 
obtained for the first, second and third sides of one sample. The samples properties, 
such as density, sampling depth Н, quasi-matrix of velocity Vij (see point 5.5), index 
of LAAA, are presented in Table 8.1. 

Sedimentary rock samples 22 and 1724 (Fig. 8.4а, 8.4b) have been taken from a 
well of "PechorNIPINeft'" oil fields. In the limestone (sample 22) the DSW effect was 
displayed on side 2. If the acoustopolarigram of side 2 is compared with the diagrams 
in Fig. 3.2 and 3.3 it may be concluded that the elastic symmetry elements of mineral 
grains that are in the side plane are randomly oriented relative to each other within 15o 
or 75o. On the other sides of this sample the LAAA display is very strong. In the 
sandstone (sample 1724) the DSW effect was displayed on side 3, the random 
orientation of the grain symmetry elements here being about 30-40o.  

Samples 182 and 1191 taken from the Ural Superdeep Borehole (Fig. 8.4c, 8.4d) 
are crystalline diorite (sample 182) and tuff (sample 1191) of volcanic origin. The 
DSW effect is displayed on the acoustopolarigrams of sides 1 and 2 of sample 182. 
The angle of random orientation of the grain elastic symmetry elements may be 
assessed as close to 80o (see Figs 3.2, 3.3). On sides 3 and 4 of sample 1191 a joint 
display of the DSW and LAAA effects is observed. The angles of random orientation 
of elastic symmetry elements in mineral grains may be within 30-50o. 
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A comparatively frequent DSW manifestation is observed in metamorphosed 

Archean rocks along the Kola superdeep borehole section. As an example Fig. 8.4e 
and 8.4f present acoustopolarigrams of biotite-plagioclase gneiss (sample 30020) and 
garnet-clinopyroxene-hornblende amphibolite (sample 31587). Judging by the 
acoustopolarigrams, both samples have schistose structure. However, in the plane of 
side 1 (sample 30020) and side 3 (sample 31587) a fan pattern of elastic symmetry 
elements in grains up to mutual angles of 50-70o is observed. On sides 1 and 2 a very 
strong LAAA manifestation has been detected.  

 
 
 
 

Fig. 8.4. Acoustopolarigrams for sample 22 of brown limestone (a), sample 
1724 of sandstone (b), sample 182 of subalkaline quartz diorite (c), sample 
1191 of tuff of andesite basalt (d), sample 30020of biotite plagioclase 
gneiss (e), sample 31587 of garnet-clinopyroxene-hornblende amphibolite 
(f). 1, 2, 3 are sample sides. VP - solid lines, VC - dotted lines 
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Table 8.1. 
 
Elastic-anisotropic properties of rock samples displaying the DSW effect. 
 
N
o
. 

Sampling 
location 

Rock  Sample Den-
sity 
ρ, 
g/sm3  

Depth 
Н, m 

Velocity matrix Vij, 
km/s 

LAAA 
index, D 

1 Usa deposit  Brown 
limestone 

22 2.57 1234 3.32  2.18  2.20 
2.22  3.64  2.26 
2.15  2.09  3.52 
 

0.82 
0.03 
0.61 

2 Yarigskoye 
deposit 

Sandstone 1724 2.68 35.1 1.89  1.39  1.38 
1.36  2.14  1.42 
1.41  1.39  2.03 

0.07 
0.09 
  - 

3 Ural 
superdeep 
borehole 
SD-4 

Subalkaline  
quartz  
diorite 

182 2.79 806.6 6.01  3.46  3.47 
3.50  6.11  3.48 
3.48  3.52  6.10 

0.07 
0.06 
0.03 

4  
   - " - 

Tuff of 
andesite 
basalt 

1191 2.90 2963.6 5.40  3.42  2.94 
3.31  5.20  2.92 
3.05  2.60  4.22 
 

0.20 
0.40 
0.28 

5 Kola 
superdeep 
borehole  
SD-3 

Biotite 
plagioclase 
gneiss 

30020 2.59 8566.4 3.12  1.75  1.75 
1.66 3.93  2.05 
1.70  1.90  3.71 
 

0.00 
0.05 
0.59 

6  
    - " - 

Garnet 
clinopyroxen
e hornblende 
amphibolite 

31587 3.03 8867 4.82  2.77  2.35 
2.81  4.08  2.18 
    -    2.00  2.69 

0.47 
0.45 
0.09 

 
The above assessment for the angles of random orientation of elastic symmetry 

elements in mineral grains is particularly rough, since it does not include the grain 
size, the relation between the wave length and wave frequency and other factors. 
Determination of angles α, for instance, by optical indicatrixes is very complicated 
due to the difference in mutual orientation of optical and elastic symmetry elements in 
crystals [Kazakov, 1987]. It is difficult to take this difference into account. It should 
be also noted that the detected depolarization effect arises precisely due to the random 
orientation of elastic symmetry elements in the plane perpendicular to the wave 
propagation. For instance, in Fig 8.4 this effect has been detected only in one 
direction for the three samples and in Fig. 8.4c and 8.4d - in two directions. If the 
effect display had been caused by scattering of the shear waves on small- and large-
scale heterogeneities, the effect of depolarization would have been observed in all 
three directions. Earlier the effect of depolarization of volume elastic waves when 
scattering in a randomly heterogeneous medium has been described by S.I. 
Alexandrov [1997]. 

A theoretical analysis, experiments on the model and measurements of elastic 
anisotropic properties of some rock samples by the acoustopolariscopy method 
showed that as shear waves propagate through anisotropic media consisting of 
structural units with differently oriented elements of elastic symmetry, previously 
unexplored phenomena may be observed.  
1. From the analysis of shear waves propagation, for instance, by the 

acoustopolariscopy method anisotropic heterogeneous media, consisting of 
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mutually orthogonal by elastic properties layers (grains), can be identified as 
isotropic.  

2. If the elastic symmetry elements in layers or grains constituting an anisotropic 
medium are mutually randomly oriented in the range of 10-80o, the propagation 
of linear polarized shear waves in the directions close to the normal to the plane 
of random orientation is accompanied by their depolarization, i.e. increase in their 
ellipticity grade. This phenomenon called the effect of depolarization of shear 
waves (DSW) is most displayed when the angle of random orientation between 
the elastic symmetry elements in grains (layers) is close to 45o. In the 
acoustopolarigrams of multicomponent media samples the DSW phenomenon 
may be discovered in the cases when the АVC amplitudes at crossed polarization 
vectors in their minima points are markedly higher than those detected at the 
same points in the acoustopolariscope without the sample. The DSW 
phenomenon allows one to assess the angle of random orientation of the elastic 
symmetry elements in grains (layers) in mono-and polymineral rocks. 

3. The DSW phenomenon displayed as shear waves propagate through anisotropic 
media composed of structural units with randomly oriented elastic symmetry 
elements, unlike the similar effect arising in heterogeneous media, is detected 
only in one or two directions in a solid body.  

4. To our mind, the DSW phenomenon under study can also occur when shear 
waves propagate through geological media during seismic investigations. An 
increase in the shear waves ellipticity on the seismic work routes in Western 
Siberia mentioned in [Rezyapov, 1992; Skavinskiy & Din Yun En, 1992] can be 
explained by the display of this phenomenon. Further investigation of the 
phenomena accompanying propagation of shear waves in multicomponent 
anisotropic media will facilitate the analysis of properties of crystalline rocks as 
well as metals, ceramics, plastic, concrete, composite material et al. 

 
8.4. Correspondence principle for metamorphosed rocks 

 
The application of the acoustopolariscopy method for investigation of elastic and 

non-elastic characteristics of minerals and rocks has greatly expanded our knowledge 
of their structure and properties. Acoustopolarization investigations of the rocks from 
the Voche-Lambina geodynamic region and the core extracted from various depths of 
the Kola (SD-3) and Ural (SD-4) superdeeps, Vorotilov and Tyrnyauz deep boreholes 
etc. showed that in the upper crust anisotropic rocks of orthorhombic and, to a lesser 
degree, of transverse-isotropic symmetry types prevail [Gorbatsevich, 1995; Rozaev 
& Gorbatsevich, 1996]. Following Aleksandrov and Prodaivoda [Aleksandrov & 
Prodaivoda, 2000], in Archean gneisses and amphibolites lower symmetry forms are 
observed as well. One of common effects reflecting structural features of rocks is the 
effect of linear acoustic anisotropic absorption (LAAA). This effect is registered by 
the acoustopolarization method in layered and linearly textured rocks and in rock 
forming minerals displaying perfect cleavage [Gorbatsevich et al., 1999]. 

The results of acoustopolarization observations, on the whole, allow one to 
conclude that elastic properties of crystalline rocks have both determined and 
statistical components. Their proportion should be determined for every specific rock 
taken at every specific location. In our opinion, in most cases the elastic symmetry 
type of metamorphosed crystalline rocks may be not lower than orthorhombic. This 
consideration is based on the fact that the factor forming the rock elastic anisotropy is 
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most often the stress tensor, especially if those stresses, let us call them 
palaeostresses, act during a long (geological) time. 

According to the elasticity theory, there is a direct relation between the 
palaeostress tensor and the type of elastic anisotropy of a rock. This has been 
corroborated by the observations as well [Robin, 1979; Kozhevnikov, 1982]. For 
instance, under the action of a uniaxial palaeostress field, with Т1 > Т2 = Т3, it may be 
concluded with certainty that anisotropy of transverse-isotropic type will arise in the 
rock. Given lithostatic and horizontal tectonic fields, with Т1 > Т2 > Т3, the 
orthorhombic type of elastic symmetry appears in the rock. Heterogeneities, the 
presence of primary anisotropy will distort the state of the rock total anisotropy.  

During metamorphic transformations when anisotropy arises the principle of 
potential power minimum is realised in the rock. According to this principle in the 
direction of the greatest component of the palaeostress field Тmax the least velocity of 
compression waves Vmin, is observed, while in the direction of the least component 
Tmin the greatest velocity Vmax is detected [Belikov et al., 1970; Kozhevnikov, 1982; 
Gorbatsevich, 1995]. For the rock element located in the massif the value of Tmin is 
unknown as a rule. Near the earth surface it may be close to zero. At the same time 
the values of elastic wave velocities in a sample always have the values other than 
zero. With this, on the whole, the ratios between the palaeostresses and velocities in a 
metamorphosed rock can be presented in the following way: 
 

minminmax1max )( TVVfT +−=  ,                                 (8.1) 
 

minmin2 )( TVVfT avav +−= .                                      (8.2) 
 

The value of the third component Tmin can be determined by the ratio 
 

)( 0min3min VVfT −= ,                                               (8.3) 

 
where Vav is the average velocity, V0 is the velocity value in the isotropic sample 
measured to the changes caused by a metamorphic process.  

There is a problem of determining the value of V0 in an altered metamorphosed 
rock. The value of Vav from the expression (6.13) can be taken for the value of V0. 
But, on the whole, the velocities of wave propagation in metamorphosed rocks, as a 
rule, are lower than, for instance, those in volcanic rocks. In Eq. (8.1)-(8.3) f1, f2, f3 
reflect some functional dependencies of Vii vs components of the palaeostress field. 
The proportionality reflected in Eq. (8.1)-(8.3) will extend to the agreement between 
the rank of the velocity matrix and the rank of the palaeostress field tensor. 

Since the stress field in homogeneous bodies is described by the tensor of not 
higher than the second rank, the quasi-matrix (5.5) can quite adequately reflect the 
relationship among the velocity values in an anisotropic metamorphosed rock. Thus, 
the relations between the palaeostresses and velocities in a metamorphosed rock may 
be considered as corresponding to some correspondence principle. This principle 
results from the more general superposition principle stated by Pier Curie [1966]: if 
certain causes initiate the corresponding effects, the symmetry elements of the causes 
should manifest themselves in the effects induced by them.  

As applied to the relation between the stress field type and the elastic symmetry 
type of the rock, the correspondence principle can be formulated in the following 
way. In the palaeostress field, in which the three main components are not equal, the 
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crystalline rock acquires the orthorhombic symmetry type. In the palaeostress field, in 
which two components are equal and the third one differs from them in value, the 
rock acquires the transverse-isotropic symmetry type. Rocks that experienced 
substantial metamorphic transformations with persistent orientation of the 
palaeostress field components will have the symmetry type not lower than 
orthorhombic.  

In accordance with the stated correspondence principle in metamorphosed rocks 
the orthorhombic and transverse-isotropic types of elastic symmetry will be most 
frequent. Rocks penetrated by the Kola superdeep borehole have the orthorhombic 
and transverse-isotropic types of elastic symmetry, the orthorhombic type being 
predominant [Gorbatsevich, 1995]. The predominance of the orthorhombic type 
corroborates the fact that in the geological past of the Pechenga massif tectonic 
shoves were very active [Orlov & Laverov, 1998]. 

The principle of correspondence of the palaeostress type with the type of the 
elastic constants matrix will be broken if some other reasons arise and their influence 
on the rock will be greater than that of the palaeostresses. For instance, it may be the 
mechanism of a viscous flow. It should be believed that with depth the component 
distribution in the stress field will be close to hydrostatic [Gorbatsevich, 1996]. In a 
heterogeneous rock that experienced several superimposed cycles of the stress state 
alteration and other influences this correspondence principle will be also violated.  

 
8.5. Assessment of palaeostresses parameters in metamorphosed rock massifs 
 

As indicated above, the transition of a rock to the anisotropic state occurs under 
the influence of palaeostresses and deformations during structural-metamorphic 
evolution of metamorphic complexes. Therefore a comparative analysis of elasticity 
constants Cαβ (6.4), anisotropy factors Аp, BS and other data allow obtaining 
information on the rocks stressed state that existed at the most significant stage of the 
palaeostress activity.   

Following Kozhevnikov [Kozhevnikov, 1982], in polymineral rocks under the 
non-hydrostatic palaeostress field influence minerals will acquire a new orientation 
that reflects the evolution of the main factors - pressure, temperature and time of their 
activity. At one and the same period some minerals will experience syntectonic 
crystallization and acquire a thermodynamically stable orientation. On the whole, in 
anisotropic rocks the elasticity values of Cαβ will be related to the components of the 
stress (palaeostress) tensor Тij of the deformation stage n

ijε  by a similarity of 
generalized Hook's law: 
 

),( Λ= tfCT n
ijij εαβ .                                           (8.4) 

 
In this equation t and Λ are the time factor and temperature, whose functional relation 
to the Tij, Cαβ, n

ijε  parameters is still to be established.  
However it is known that syntectonic crystallization causes a rigid connection 

between Tij and Cαβ in amphibolite and some other metamorphic rocks (Kazakov, 
1987). If a polymineral rock is formed in the compression stress field, then, as 
mentioned above, the minimum value of the compression wave velocity (V33) or 
elasticity constants (С33) correlate with the orientation of the maximum compression 
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force (Т1). Thus, the maximum compression force (Т1) will be oriented along the 
normal to schistosity.  

The least palaeostress Т3 is oriented along the axis coinciding with linearity and 
corresponding to the greatest compression wave velocity V11 and, accordingly, to С11. 
The intermediate value of Т2 will be predominantly oriented parallel to schistosity, but 
along the normal to linearity. The diagram in Fig. 8.5a will correspond to rocks of 
rhombic symmetry. As mentioned above, in direction 3 the compression wave velocity 
is minimum.  

For the model, Fig. 8.5a, in direction 1 coinciding with the linearity the value of 
this velocity is maximum and in direction 2 it acquires an intermediate value. In the 
schistose rock model of pseudohexagonal symmetry the orientation of palaeostresses 
Т1, Т2 = Т3 components can be presented as it is shown in Fig. 8.5b. 

The models, Fig. 8.5, allow suggesting the coefficients reflecting the relative 
values of the stress field components under which elastic properties were formed, a 
certain orientation of the symmetry 
elements and anisotropy type arose. 
For the model, Fig 8.5a, in accordance 
with generalized Hook's law, the 
coefficients Кij will be proportional to 
the relationship among the elasticity 
constants values С11, С22, С33: 
 
K13 = T1/T3 = C11/C33 = (V11)2/(V33)2,  
K23 = T2/T3 = C11/C22 = (V11)2/(V22)2,  
K33 = T3/T3 = 1.                            (8.5) 
 

Those coefficients will reflect the 
relationship among the stress field 
components for rocks of rhombic symmetry in directions 1, 2, 3. For the model in Fig. 
8.5b the coefficients, accordingly, are: 
 

K12 = K13 = Т1/Т2 = C11/C33 = (V11)2/(V33)2,  K2/K3 = 1,                  (8.6) 
           

since here the relationship among the palaeostress components is Т1 > T2 = T3. 
The analysis of the coefficients К12, К13, К23 as well as spatial orientation of the 

greatest, least and average velocities measured in the samples with their preserved 
spatial orientation in the rock mass will allow one to reconstruct the main 
characteristics of the palaeostress field.  

An example of such reconstruction performed at outcrop 145 of the Voche-
Lambina geodynamic region is given in Fig. 8.6 [Voche-Lambina…, 1991]. The 
procedure of measurements and determinations was the following. First we took 
samples marking an azimuth and incidence angle of their main surfaces. Then being 
oriented to layering (schistosity) and linearity, samples in a cubic form were sawn. 
After that by the acoustopolariscopy method (see point 5.3) the planes of the greatest 
anisotropy relative to the sample sides were determined. 

Using the Wulff net and the data on the azimuth and the angle of side incidence 
we made the calculations of the azimuth and the incidence angle of the normal to the 
plane of the greatest anisotropy. In Fig. 8.6 on the outcrop 145 sketch map these 

Fig. 8.5. Schematic orientation of components 
Т1 = σ1

п; Т2 = σ2
п; Т3 = σ3

п of the compressing 
stresses field for the rock of orthorhombic (a) 
and pseudohexagonal (b) symmetries. The 
arrows show the direction of linearity L. 
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directions are depicted as arrows. The arrow size is proportional to the relative value 
Kij. The values of the pitch angle for direction Т1 are given alongside the arrows.  

 
Fig. 8.6. The direction and relative value of the compressing palaeostresses greatest 

component on the sketch map of outcrop 145 of Voche-Lambina geodynamic region. 
1 - plagiogranite, 2 - granodiorite, 3 - oligoclase-microcline granite, 4 - veined occurrences, 5 - 
ruptures, 6 - sampling locations, 7 - palaeostresses directions (the outcrop sketch map 
compiled by V.V.Balagansky and L.N.Korolyova). 
 

An overview of the data from Fig. 8.6 shows that at outcrop 145 two isolated 
directions of the component Т1 action are revealed. Measurements on 8 samples 
(series 145-1-4, 145-1-5, 145-1-6, 145-1-8) detected one direction with the azimuth in 
the range of 354-28o and incidence angles of 28-78o. The azimuth of the second 
direction is maintained rather strictly and is 58-67o with the incidence angles of 30-
66o. The second direction has been detected in the samples of series 145-1-7 and in 
the sample 145-1-5b/2. From the above data one may conclude that the first and 
second directions of Т1 reflect the processes that occurred, accordingly, at different 
deformation stages or metamorphism cycles.  

The assessment made for the direction and relative value of palaeostresses, to our 
mind, is more reliable in terms of their direction. The relative value of palaeostresses 
is likely to depend not only on the factors reflected in Eq. (8.4). For instance, under 
the oriented stress hornblende in plagioamphibolite can acquire a strict orientation and 
thus cause stronger anisotropy than that observed in plagiogranite. Further 
investigations, including those in experimental mineralogy for individual rocks, will 
allow establishing scales of correspondence of palaeostress values to the measured 
elasticity characteristics. 

To summarize the outlined aspects for the acoustopolariscopy use in the 
crystalline rock investigations it should be noted that the most complete summaries 
for determined properties of the samples from the Kola and Ural superdeep boreholes 
and Voche-Lambina region have already been published [Gorbatsevich, 1995]. This 
chapter is mainly devoted to the experimental study of the peculiarities of the new 
effects display - linear acoustic anisotropic absorption (LAAA) and depolarization of 
shear waves (DSW). The combination of comparatively strong elastic anisotropy and 
LAAA occurs rather often, but they can manifest themselves independently of one 
another. The detected convergence between the orientations of the symmetry elements 
of elastic anisotropy and LAAA can provide additional information on peculiarities of 
the rock structure. The other phenomenon - DSW allows one to assess the angle of 
random orientation of elastic symmetry elements in grains (layers) of mono-and 
polymineral rocks.  

The study of palaeostress parameters is of no less importance. So far not so much 
has been done in this field. At the same time, acoustopolariscopy enables determining 
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the spatial orientation of the palaeostress field components in a metamorphosed rock. 
The observed relations between the values of components and elastic wave velocities 
allows one to judge the relative values of these components. 

In our opinion, of great importance is the principle of correspondence of the 
palaeostress field parameters with the type of anisotropy transformed by this field of 
the metamorphosed crystalline rock. According to this principle, in the palaeostress 
field, where three main components are not equal to each other, a crystalline rock 
acquires an orthorhombic symmetry type. In the palaeostress field, where two 
components are equal and the third one differs from them in value, a rock acquires a 
transverse-isotropic symmetry type. Rocks that experienced substantial metamorphic 
transformations with persistent orientations of palaeostress field components will 
possess a symmetry type not lower than orthorhombic.  

On the whole, the acoustopolariscopy results obtained for a large number of rocks 
of various genesis - sedimentary, volcanic, metamorphosed rocks including sandstone, 
dolomite, diabase, plagiogranite, granodiorite, biotite gneiss, shale, feldspar 
amphibolite et al. showed that in every sample, even in weakly anisotropic ones, the 
spatial orientation of symmetry elements can be revealed. Rather often, especially in 
metamorphosed rocks, the LAAA effect is displayed. Property determination of the 
samples from the Kola, Ural superdeep boreholes, Voche-Lambina region et al. have 
clearly showed that without the first stage - acoustopolarization measurements of 
spatial location of elastic symmetry elements in a sample - anisotropic characteristics 
of a rock cannot be obtained correctly. As the measurement practice showed, the 
elastic symmetry elements may not coincide with the elements of visible layering 
(schistosity) and linearity of the sample. A rock can be highly anisotropic even 
without visible texture manifestation in the sample.  

 



 89

9. VARIABILITY OF ELASTIC PROPERTIES OF ROCK SAMPLES FROM 
THE URAL SUPERDEEP BOREHOLE (SD-4)  
 
9.1. Brief description of rocks from the Ural SD-4 section 
 

The Ural Superdeep Borehole (SD-4) has been laid in the western limb of the 
Tagil megasynclinorium with the object of a comprehensive study of the Palaeozoic 
section in the Ural typical eugeosynclinal zone [Zagruzina et al., 1989]. In the range 
down to a depth of about 3 km a monotonous unit of volcanic-clastic rocks of basic 
and intermediate composition has been cut - the Silurian Immenov Formation. It is 
composed of coarse tephroide and tuff of pyroxene-plagiophyre basalt and andesite 
basalt, whose pyroclastic material pertains mainly to plagiophyre andesite. By the 
isotopic composition of rock forming and ore elements (oxygen, carbon, sulphur and 
lead) one may propose a homogeneous high temperature deep source of rocks that is 
typical of basalts [Zagruzina et al., 1989]. This, in its turn, should cause the similarity 
of physical properties of rocks cut by the borehole.  

 
Fig. 9.1. Geological column, density ρ, magnetic susceptibility χ, compression VP and shear 
VS wave velocities, electrical resistance R, dimensions of caverns P in the section of borehole 
SD-4 [Druzhinin et al., 1999].  

 
Figure 9.1 shows a geological column of rocks. From the surface down to a depth 

of H = 0.43 km basalt and andesite basalt lavas occur. The interval of H = 0.43-1.34 
km is composed of psephytic andesite-basalt pumice tuff and the interval of H = 1.34-
1.92 km - psephytic andesite-basalt tuff. In the range of 1.92-3.0 km psephytic 
leucoandesite-basaltic, andesite and basaltic tuffs occur. Below 3.0 km tuff sandstone 
(flysch) and tephroide lie. Accordingly, the unit boundaries are at depths of 430; 
1344.6; 1921; 3001 m, etc. Inside the unites rock interlayers with quartz carbonaceous 
veinlets and sulphide penetrated by numerous healed fissures, other textural and 
structural peculiarities are present.  
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The aim of the acoustopolarization observations on the Ural SD-4 core samples 
was revealing rock elastic anisotropy, assessment of its type and degree, orientation of 
symmetry elements in regard to the borehole axis, comparing them with the stability 
and location parameters of the borehole. The measurements have been done on 25 
cubic samples with the 40 mm edge. 

The samples have been made of basalt, basalt pillow lava and breccia, andesite 
basalt porphyrite, andesite basalt, andesite basalt tuff, tuffite etc. (Fig. 9.1, 
Attachment 2). The samples represent the borehole intervals of 0.3-1.5 km and 2.4-3.2 
km. The adopted indexing of edges and faces is given in Fig. 9.2. Acoustopolarigrams 
for the samples are given in Figs. 9.3-9.5. The results of the change in density ρ, the 
velocity of elastic waves located in accordance 
with the matrix Vij (5.5), LAAA index D and 
inclination angles of elastic symmetry elements 
with regard to the sample faces are presented in 
Attachment 2. 

Besides matrix Vij obtained on a cubic sample 
whose normal to face 3 is oriented along the 
borehole axis, Attachment 2 presents matrix o

ijV  in 
which the velocities have been measured through 
the sample's additional faces. These faces were 
arranged parallel and perpendicular to the 
orientation of the revealed elastic symmetry 
elements of the medium. The photos of some 
samples with additional faces are given in Fig. 9.6. 
When the angles between the revealed symmetry 
elements and the orientation of faces, Fig. 9.2, 
were no more than 15-20о, no additional faces 
were made on the sample.  

All matrixes o
ijV  in Attachment 2 have been re-oriented in such a way that a 

number of relations (6.1) have been met (followed) if the medium belongs to the 
orthotropic symmetry type. If the medium is pseudohexagonal, then the matrix is built 
according to the relations (6.2, 6.3). 

 
9.2. Peculiarities of acoustopolarization diagrams for volcanic rocks 

 
First we consider acoustopolarigrams of the rock samples from the section (Fig. 

9.3-9.5). By the acoustopolarigram shapes rocks from SD-4 can be divided in three 
groups: rocks with weak, marked and strong anisotropy. The VP acoustopolarigrams 
for the weak anisotropy rocks have a form close to a circle. The VC 
acoustopolarigrams are small as compared with the VP diagrams. Due to 
heterogeneity and measurement errors their shape does not often allow distinguishing 
the АVCМ minima and the exact determination of the elastic medium elements 
direction. By these indications andesite basalts (sample 78), basalts (sample 83), 
tuffites (samples 105, 152), diorites (sample 182) and tuffs (samples 253, 934, 1119) 
pertain to weakly anisotropic rocks. They are scattered, within the known data, rather 
evenly along the borehole section from H = 356.8 m to H = 2643.2 m. 

The VP acoustopolarigrams for strongly anisotropic rocks (samples №№ 1138, 
1161, 1191, 1223) have the forms close to the theoretically predicted ones providing a 
joint manifestation of purely elastic effects - anisotropy and non-elastic ones - linear 

Fig. 9.2. Indexing of cubic 
samples cut from the SD-4 
core. Direction 3 (Z) coincides 
with the core axis. 1, 2 – 
arbitrary directions. 
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acoustic anisotropic absorption (LAAA). The VP and VC acoustopolarigrams most 
often represent four petal rosettes, the size of VC being comparable with that of VP. 
Clear minima of the amplitudes on the VC lines allow rather precise determination of 
the spatial orientation of the medium symmetry elements with the error no more than 
3о. The elastic symmetry elements of these rocks form an oblique angle with the 
orientation to the borehole bottom. All the rocks exhibiting strong anisotropy are fine-
psephitic-psammite tuffs. Their appearance and visible structure (for instance, the 
structure of sample 1223 is characterized as homogeneous) do not allow 
distinguishing them from the rocks with weak and marked anisotropy. Strongly 
anisotropic rocks are concentrated in the interval of H = 2867.8-3068 m. 

9.3. Analysis of physical properties, elastic anisotropy and symmetry type of 
rocks 

 
Analysing the data from Attachment 2 one can see that the rock density varies in 

the range of ρ = 2.77 g/sm3 to ρ = 2.93 g/sm3. This index does not show any regular 
association with the sampling depth H. The component values of matrix Vij and 
normalized matrix o

ijV  do not always obey the equalities stated in the relations (6.1), 
(6.2). It means that not all the samples are elastic-homogeneous. By this sign the most 
heterogeneous are rocks presented by samples №№ 70, 78, 172, I99, 908, 1138.  

Fig. 9.3. A - acoustopolarigrams of samples No. 70, 78, 83, 92, 97 (H = 239-430.1 m). B - 
acoustopolarigrams of samples No. 105, 114, 152, 172, 182 (H = 435.9-808.6 m).  

A B 



 92

One can see from the data presented (Attachment 2) how great is the difference 
between the values of matrix Vij and o

ijV .  
For instance, for strongly anisotropic rocks (samples №№ 1138, 1161, 1191 and 

1223) the difference between the largest and least velocities Vp, Vs in matrix o
ijV  is 

much greater than that in matrix Vij. For o
ijV  the least values of Vpmin = 3.84-3.89 

km/sec. They approach the values of shear wave velocities Vs. In matrix o
ijV  a 

relationship between the maximum velocities of compression Vpiim and shear Vsijm 
waves has been found (Fig. 9.7):  

 
Vsijm = 0,57 Vpiim     (9.1) 

 
with the factor of mutual correlation r = 0.73. 

The most anisotropic rocks have the lowest Vpiim and Vsijm. The index D of the 
LAAA effect varies in the range of 0.0 to 0.4. It is most conspicuous in strongly 
anisotropic rocks (samples №№ 1138, 1161, 119I, 1223) and in some rocks with 
marked anisotropy (samples №№ 97, 199, 401). The samples with marked or high 
LAAA, as a rule, have been taken near the zones of structural disturbances (H = 430, 
924, 1440.4, 2667.8, 3068 m). In these zones contacts between the rocks of different 
types are observed (Fig. 9.1). 

On the basis of the data from Attachment 2 we have calculated constants Сαβ by 
formulas (6.5)-(6.10). The anisotropy factors ε1133, ε2233, γ1213, γ1223 ΔT have been 
determined by formulas similar to (6.11): 

 

Fig. 9.4. A - acoustopolarigrams of samples No. 184, 192, 199, 253, 256 (H = 828.9-
1128.2 m). B - acoustopolarigrams of samples No. 401, 908, 918, 934, 1119 (H = 
1440.4-2843.2 m).  

BA 
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where V11 is maximum, V33 - minimum and V22 - medium values of the longitudinal 
wave velocity in matrix Vij. 

c

cc

V
VV

13

1312 −=1213γ      (9.4) 

 

c

cc

V
VV

23

2312
2

−
=312γ ,     (9.5) 

 
where 2/)( 211212 VVV c += ,  2/)( 311313 VVV c += ,  2/)( 322323 VVV c += . 

 
We also introduced the following factor: 
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This factor, to our mind, is a criterion that 
can be used for distinguishing a symmetry type 
(pseudohexagonal or rhombic). We assume that if 
0< ΔT < 0.25 or 1.75< ΔT < 2.00, then a rock 
should be assigned to pseudohexagonal. With ΔT  
= 0.25-1.75 by elastic properties a rock should 
belong to the rhombic symmetry. 

The mentioned characteristics including 
determined symmetry types are given in 
Attachment 3 and 4. Accordingly, in Attachment 
4 rocks of pseudohexagonal symmetry are marked 
G and those of rhombic symmetry - R. 

In Fig. 9.8 functional relation between the 
factors ε1133, γ1213, γ1223 is given. For the averaging 
line, Fig. 9.8, the following equation was 
obtained: 

 
γ1213 =  0.288 ε1133  (9.7) 

 
with the factor of mutual correlation r = 0.85,  

 
γ1223 =  0.294 ε1133  (9.8) 

 
with the correlation factor r = 0.89. 

As follows from the above data, for volcanic rocks elastic anisotropy represented 
by relationship between the compression wave velocities is closely related with the 
anisotropy represented by the relations between the shear wave velocities. This is 
especially true for highly anisotropic rocks in the depth range of 2867.8-3068 m. But 
for tuffs, tuffites and basalts composing the SD-4 units the anisotropy of elastic 

Fig. 9.5. Acoustopolarigrams of 
samples No. 1136, 1138, 1161, 
1191, 1223 (H = 2866-3068 m).  
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properties is much more conspicuous in the compression wave velocities rather than 
in the shear ones.  

 

 
 

Fig. 9.6. Photo of the samples with additional faces cut from the SD-4 core. From left to right: 
pyroxene-plagioclase andesite-basalt (sample 92); almond-shaped pyroxene-plagioclase 
andesite-basalt (sample 401); andesite-basaltic psammitic fine-psephitic tuff (sample 918); 
fine-psephitic-psammitic tuff (sample 1138).  

 
If we take ε1133 = 0.05 (anisotropy factor Vp11/Vp1 > 5%) as the threshold value, 

then by this sign samples №№ 78, 97, 114, 184, 192, 199, 401, 1131, 1161, 1191, 
1223 pertain to anisotropic.  

By the factor ε1133 > 0.15 the last five samples should be assigned to strongly 
anisotropic [Gorbatsevich, 1995], have pseudohexagonal symmetry. The symmetry of 
weakly anisotropic rocks is greatly influenced by the structural heterogeneity. That is 
why in relation to them the division into rhombic and pseudohexagonal symmetry can 
be done only approximately. Rocks with marked anisotropy are mainly of rhombic 
symmetry. These rocks with relatively high values of ε1133 belong to the 
pseudoxehagonal type (samples №№ 97, 192, 401). 

 
9.4. The relation between the parameters of the rock elastic symmetry and the 
borehole stability 

 
To our mind, the borehole stability is determined by the presence of stresses, 

anisotropy of elastic properties and the values of angles defining the position of the 
stress components of the rock elastic symmetry with respect to the borehole direction. 
From the above data (Attachment 2-4) one can conclude that in the SD-4 vicinity the 
most complicated stress state will be observed where it intersects highly anisotropic 
rocks (Н = 2867.8 m and below).  

In this case, as noted above, the borehole stability will be greatly decreased if the 
angle between the normal to the elastic symmetry plane and the borehole axis differs 
from zero or the right one. According to the observations [Bakhvalov et al., 1988], in 
this case the borehole axis will deviate from the vertical since during drilling the 
borehole tends to occupy the position perpendicular to the elastic symmetry plane. To 
assess the relation between the parameters of elastic symmetry and the borehole 
stability we used the data from Attachment 2. We calculated the value of the space 
angle ψ between the perpendicular to the elastic anisotropy plane and the direction to 
the borehole bottom.  

As is known [Korn & Korn, 1968], the angle between the two normals to two 
planes can be determined by the formula: 
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where А1, В1, С1, А2, В2, С2, are the 
factors of the planes equations: 

 
А1x + В1y, С1z + D = 0, 
А2x + В2y, С2z + D = 0. (9.10) 

 
If the angle, where directions 1, 2, 

3 (Х, Y, Z) meet, is considered to be the 
origin of the coordinates, Fig. 9.2, the 
equation of the normal to the plane 
XOY takes the form 

 
Z +D1 = 0        (9.11) 

 
In this case Eq. (9.9) becomes: 
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The acoustopolarization measu-

rements resulted in determination of the 
angles βn1, βn2 (see Figs. 9.3-9.5 and 
Attachment 2) between the projections of 
the elastic symmetry plane and plane 
XOY, accordingly, on the sample sides 1 
and 2, Fig. 9.2. In this connection Eq. 
(9.9) takes the form [Korn & Korn, 
1968]: 
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The calculated angle ψ for the rocks displaying marked and strong anisotropy are 

given in Attachment 4. Figure 9.9 presents depth-dependent values of anisotropy 
parameters ε1133, γ1213, linear acoustic anisotropic absorption D and space angle ψ. On 
evidence derived from Yaroslavl Department of KamNIKIGS logging results are 
given - the borehole real diameter P for the interval of 0.3-3.1 km. A general overview 
of the data, Fig. 9.9, shows that in the vicinity of depths Н = 430, 886, 924, 1440 and 
2496 m, both by ε1133, γ1213 indexes and D values, zones with marked anisotropy of 
elastic and absorbing properties have been found. 

 

Fig. 9.7. Relation between maximum values of 
longitudinal Vpiim and shear Vsijm. waves in 
matrixes Vij.  

Fig. 9.8. Relation between anisotropy factors ε1133 
and γ1213, γ1223 for the SD-4 rocks.  
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Fig. 9.9. Indexes of elastic anisotropy ε1133, γ1213, linear acoustic anisotropic absorption D, the 
angle between the perpendicular and the anisotropy plane ψ and the real diameter P of the 
SD-4 borehole at different depths H. 

 
Down to a depth of 2867 m the value of angle ψ ranges from zero to 86°. This 

suggests the availability of mechanical heterogeneity and nonuniform formation of 
units I-IV during their melting and accretion.  

Starting from a depth of 2867 m the results of measurements and determinations 
show the availability of the zone within which the rock properties greatly differ from 
those of the overlying rocks. From this depth elastic anisotropy both by compression 
and shear waves increases virtually linearly. The LAAA index rises as much. By 
these indexes a zone stands out within which the stress state in the borehole vicinity is 
heterogeneous due to strong anisotropy of elastic properties. The deviator of the stress 
tensor will be of substantial value and spatial orientation of the tensor main 
components will transfer as the variability of the angle ψ = 51-76° shows.  

The values of ε1133, γ1213, D and ψ (Fig. 9.9) show a close relation to the value of 
the diameter P, i.e. to the size of caverns in the borehole. This relation is most 
conspicuous in indexes ε1133 and γ1213. Interestingly, the depth difference between the 
marks, where the most intense rise in elastic anisotropy by ε1133 and γ1213 and the most 
sharp increase in the cavern size P begin, is about 60 m. Thus, a prompt assessment of 
the rock anisotropy will allow prediction of possible cavern and inrush formation. 

In conclusion we will set forth the main tenets and implications from the above 
material. From the outline of rocks from the SD-4 section it follows that the 
homogeneous deep source which is typical of basalts provided their rather 
homogeneous chemical composition. Distinctions between the rocks in units I-IV are 
caused by different crystallization conditions and parameters of the subsequent stress-
strain state. The registered rock elastic anisotropy is a result of the prolonged stay 
under stresses, i.e. most likely palaeostresses [Kozhevnikov, 1982].  

The acoustopolariscopy results of SD-4 core allowed one to divide rocks into 
rather isotropic, rocks with marked and strong anisotropy. Strongly anisotropic rocks 
occur in the interval of 2867.8-3068 m and, probably, deeper. As a rule, they have a 
pseudohexagonal symmetry. This suggests the availability of a great component of 
tectonic stress. This component acts along the normal to the symmetry plane 
determined by the acoustopolariscopy method. It is remarkable that the appearance 
and visible structure of strongly anisotropic rocks do not allow one to distinguish 
them from the rocks with weak and marked anisotropy.  
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In rocks with marked anisotropy the rhombic type of elastic symmetry prevails 
suggesting much the same influence of geostatic and tectonic stresses. If the 
anisotropy indexes in rocks with marked anisotropy are higher than the average 
values then the rock symmetry becomes pseudohexagonal. This allows one to state 
that at these depths the tectonic component of the stress field begins to dominate over 
the gravitation one. This predominance is especially great at depths of Н = 2867-3068 
m. Judging by the value of angle ψ the orientation of the stress tectonic component is 
close to subhorizontal.  

The relations between the matrix Vij values for compression and shear waves for 
this type of rocks showed that isotropic (weakly anisotropic) rocks have a 
comparatively low Poisson's ratio – v = 0.18. During seismic investigations this index 
can serve as a diagnostic sign for volcanic rocks of this type. The anisotropy 
expressed by the relations between the compression wave velocities is closely 
connected with that expressed through shear waves. But for this type of rocks 
anisotropy of elastic properties is much better expressed in the difference between the 
compression waves rather than the shear waves. Contrast zones are singled out by the 
indexes of elastic anisotropy and linear acoustic anisotropic absorption in the SD-4 
section (from the data available) in the 430, 886, 924, 1440, 2496 and 3000 m depth 
vicinity, The presented geological column points to the change or contacts between 
various rocks within these zones. A high index of LAAA has been fixed for the rocks 
with the oriented mineralized cracks.  

Starting with a depth of Н = 2867 m the results of measurements and 
determinations clearly show the availability of the zone within which the rock 
properties differ radically from those in the overlying rocks. Within this zone the 
stress state of the rocks is heterogeneous: the deviator of the stress tensor must be 
great and the spatial orientation of the tensor's main components must (judging by the 
value of ψ = 57-76о) transfer in space with depth. 

Within the zone of cavern formation a close relation has been found between the 
indexes of the rock elastic anisotropy and the value of the borehole transverse size P. 
There is a shift in depth between the initial marks of the most intensive rise in elastic 
anisotropy and a sharp increase in the sizes (section) of the borehole caverns. Such an 
increase in the cavern section has been registered 60 m lower than the beginning of 
the rock anisotropy rise. If a similar shift in depth is fixed in other boreholes, this will 
allow one to propose a prompt method for forecasting zones of stability loss. To 
assess the borehole stability exactly the elasticity constants of rocks have been 
calculated.  

The results reported in this work, on the whole, show the efficiency of the 
acoustopolarization method for determining the availability of elastic anisotropy, 
spatial arrangement of elastic symmetry elements, calculation of elasticity constants, 
determination of a symmetry type and calculation of the stability of the borehole 
drilled in an anisotropic rock mass. It is remarkable that unfavourable zones for the 
borehole stability, that were preliminary revealed in the SD-4 section through the 
assessment of the rock elastic anisotropy by shear waves, coincide in depth with the 
ones determined from the above analysis. This suggests that an express method for an 
assessment and forecast directly at boreholes can be proposed. 
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10. ANISOTROPY OF ELASTIC PROPERTIES OF ROCK SAMPLES FROM 
THE KOLA SUPERDEEP BOREHOLE (SD-3) 
 
10.1. Section lithology 
 

The Kola superdeep borehole (SD-3) has been laid in the north-eastern Baltic 
shield in the junction area of ore-bearing Precambrian structures that are typical of 
ancient platforms. It has penetrated all formations of the Proterozoic complexes and a 
major part of the Archaean complex [Kozlowsky, 1987]. Investigations on the core 
showed that in the borehole section one can observe metamorphism at prehnite-
pumpellyite to amphibolite facies  

 

 
 

Fig. 10.1. Geological column and core properties in the section of the Kola superdeep 
borehole (SD-3). 
1 - augite metadiabase with interlayers of pyroxene and picrite porphyrite; 2 - metaphyllite, 
aleurolite with tuff interlayers; 3 - rhythmically layered metasandstone with subordinate 
aleurolite and phyllite; 4 - actinolized metadiabase; 5 - dolomite, arkose metasandstone; 6 - 
sericite schist; 7 - diabase; 8 - dolomite, polymict metasandstone; 9 - wehrlite; 10 - diabase 
porphyrite, schist after them; 11 - metadiabase; 12 - biotite-plagioclase gneiss with high-
alumina minerals; 13 - biotite-plagioclase gneiss with amphibole, epidote, sphene; 14 - 
magnetite-amphibole schist; 15 - gabbro-diabase, 16 - biotite-plagioclase and sphene, biotite-
amphibole-plagioclase gneiss, schist. 
a - distribution of density values ρ in the section. 1 - unit values measured on separate core 
samples; 2 - mean interval values; 3 - linear tendency of alteration ρ  with depth. 
b - scattering of unit values of longitudinal wave propagation velocity Vp, measured on core 
samples in the air-dry state. 1 -samples of gneiss-granite composition; 2 - amphibole-bearing 
samples; 3 - boundary line of minimum values; 4 - boundary line of maximum values.  
 

The Proterozoic complex (Н = 9-6842 m) is mainly presented by metadiabase, 
gabbro-diabase, metatuff, serpentine, metaaleurolite, metasandstone, porphyrite and 
schist, Fig. 10.1. 

Metadiabase is composed of monoclinic pyroxene, augite (50-40%) and 
plagioclase (30-20%). The rest are hornblende, quartz, chlorite, epidote etc. Gabbro-
diabase contains plagioclase, (60-20%), monoclinic pyroxene (60-20%), chlorite, 
saussurite and carbonatite (to 30%). Tuff is mainly composed of volcanic glass 
fragments, diabase, albite, plagioclase and quartz. Serpentinite contains serpentine, 
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chlorite (60%), talc (20%), tremolite (10%) etc. Fragments in metaaleurolite and 
metasandstone are represented mainly by quartz, plagioclase microcline; fragments of 
amphibole, pyroxene and garnet are scarce. Andesite-dacite porphyrite contains 
plagioclase, quartz, albite-oligoclase, sericite, chlorite etc. Schists are represented by 
plagioclase (30-50%), hornblende (50-60%) and, in small quantities, by magnetite and 
ilmenite.  

Among the Archaean rocks (Н > 6842 m) biotite-plagioclase gneisses, granites, 
pegmatites, shady migmatites, amphibolites, epidote-biotite schists are most common. 
Biotite-plagioclase gneisses, granites, pegmatites are composed of biotite (20-30%), 
sometimes partially substituted by muscovite, quartz (30-40%), plagioclase (about 
30%). In pegmatoid rocks biotite is, as a rule, substituted by microcline and 
muscovite. Varieties enriched in garnet are present. In epidote-biotite schists quartz is 
displaced by epidote and pyroxene. Compositionally, shady migmatites are close to 
biotite-plagioclase gneisses. The composition of amphibolites is ordinary: hornblende 
about 70%, plagioclase 30% and some biotite. The mineral composition of 
amphibolite schists is close to that of amphibolite.  

The Pechenga complex [Orlov & Laverov, 1998] is divided into the Matert (mt - 
9-1059 m), Zdanov (zd - 1059-2805 m), Zapolyarny (zp – 2805-4673 m), 
Luchlompolo (lz - 4673-4884 m), Pirttijarvi (pt - 4884-5619 m), Kuvernerinjoki (kw - 
5619-5717 m) Majarvi (ma - 5717-6835 m) and Televi (tlw – 6835-6842 m) 
formations (Fig. 10.1).  

The Archaean complex is represented by unit I composed of gneisses with high 
alumina minerals (HAM) (6842-7622 m), unit II composed of shady migmatites, 
gneisses and amphibolites (7622-9456 m), unit III composed of two-mica gneisses 
with fibrolite (9456-9573 m), unit IV composed of shady migmatites, gneisses and 
amphibolites (9573-10144 m), unit V composed of two-mica gneisses with fibrolite 
(10144-10273 m), unit VI composed of shady migmatites, gneisses and amphibolites 
(10278-10448 m), unit VII composed of gneisses with HAM (10448-10601 m), unit 
VIII composed of shady migmatites, amphibole gneisses and amphibolites (10601-
11411 m), unit IX composed of biotite-plagioclase gneisses with HAM (11411-11708 
m), unit X composed of biotite- plagioclase gneisses and schists (11708-12261 m). 

As follows from the above, the SD-3 section is represented by a large variety of 
rocks of ultrabasic to acid composition, different grade of reworking, metamorphism, 
structural and textural distinctions. This suggests different conditions of their genesis 
and possible variations in elastic properties and anisotropy.  

 
10.2. Elastic properties and anisotropy of Proterozoic and Archaean rocks 

 
Attachment 5 presents summary data on determined density ρ, elastic wave 

velocities arranged in accordance with the normalized matrix 0
ijV  (5.5) and index of 

linear acoustic anisotropic absorption (LAAA) effect D. As a rule, when sawing a 
sample its sides were oriented along the foliation (schistosity) and linearity. In the 
notes to the Attachment 5 one can find the cases when the side orientation does not 
correlate with the elastic symmetry elements of the sample medium. The sample order 
in Attachment 5 is determined by the depth of their excavation H. Attachment 6 gives 
calculated constants of elasticity Cαβ (see formulas (6.6)-(6.11) and anisotropy 
indexes ε1133, ε2233, γ1213, γ1223, ΔT, (see formulas (9.2)-(9.6)) for the same samples. A 
type of elastic symmetry was determined by the index ΔT.  
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Figures 10.2-10.4 show typical acoustopolarigrams for the samples of biotite-

plagioclase gneisses, granites, schists, amphibolites, apogabbro, hornblendite and 
porphyrite. Judging by the acoustopolarigrams (Fig. 10.2), elastic anisotropy of 
biotite-plagioclase gneisses and granites is very conspicuous. Acoustopolarigrams of 
samples 24996S and 28184S point to the symmetry rhombic type, while those of 
samples 30020, 24256S point to the pseudohexagonal type. In all cases LAAA is 
manifested along individual directions in the samples. This effect is very strong in 
staurolite-andalusite-sillimanite-two-mica gneiss (sample 24256S). Using the 
diagrams, Fig. 2.5, one can see that since the orientation of the largest diameter of the 
VP diagrams on sides (1-1') and (2-2') is mutual, a plane model (Fig. 2.5, a) is a basis 
for LAAA manifestation. 

Unlike gneisses and granites some schists have acoustopolarigrams without 
LAAA manifestation (Fig. 10.2) and with a shape close to the classical one (Fig. 1.4). 
Talc-phlogopite-tremolite schist (sample 26716S) has some distinctions. But a large 
number of schist samples have acoustopolarigrams that exhibit strong LAAA 
influence (Fig. 10.3). The model of LAAA manifestation may be of both - plane 
(samples 26715S, 35924) and linear-plane types (samples 19402S, 27227S). As 
shown by the acoustopolarigrams, the range of LAAA manifestation in the 
amphibolite samples is rather wide (Fig. 10.3, 10.4). The amphibolite 
acoustopolarigrams, as a rule, suggest influence of three factors in various 
combinations and degree - elastic anisotropy, LAAA and heterogeneities. For 
instance, the acoustopolarigrams of samples 24947, 35426 were most influenced by 
the first factor. The acoustopolarigrams of samples 24788S, 27026, 42413-1, 42918-1 
show the influence of the first and, to a large extent, the second factors. All the three 
factors influenced the shape of the acoustopolarigrams for samples 31272 (side 3-3') 

BA 

Fig. 10.2. Acoustopolarigrams of SD-3 core samples. 
A: a - plagioclase granite with amphibole (sample 24996S); b - epidote-biotite-
plagioclase gneiss (sample 28184S); с - biotite-plagioclase gneiss (sample 30020); d - 
staurolite-andalusite-sillimanite-two-mica gneiss (sample 24256S). 
B: a -amphibole-plagioclase schist (sample 19131S); b - amphibole-plagioclase schist 
with chlorite (sample 21720); с - amphibole-plagioclase schist with chlorite (sample 
21722); d - talc-phlogopite-tremolite schist (sample 26716S). 
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and 43553 (side 2-2'). According to the orientation of the largest diameters of the VP 
diagrams, samples 27026, 31272, 42413-1, 43553 show a plane model of LAAA, 
while samples 24788S, 42918-1 show a linear model (Fig. 2.5). 

 
 

 
Figure 10.4 shows acoustopolarigrams of fine-grained apogabbro, hornblendite, 

apogabbroic porphyrite samples. All the mentioned samples are also hornblende 
amphibolites. The acoustopolarigrams for the first three samples suggest strong 
LAAA and the influence of heterogeneities. Samples 31587, 43579 show a plane 
model of LAAA, while hornblendite (sample 38846) shows a linear one. Judging by 
the acoustopolarigrams, elastic anisotropy and LAAA in the porphyrite sample are 
weak. It is interesting to note that this sample has, besides low values of anisotropy 
factors, very high compression and shear wave velocities for such depths (Н = 11430 
m) (Attachment 5). 

On the whole, the shapes of VP acoustopolarigrams for the SD-3 section are 
typical of strongly anisotropic rocks of mainly rhombic symmetry. As a rule, 
projections of symmetry elements are easily distinguished on all three sides of the 
sample. The acoustopolarigrams show that the anisotropy of rocks from SD-3 is much 
higher than that of rocks from SD-4 and from Voche-Lambina deposit area 
[Gorbatsevich, 1995]. The VP shapes of some acoustopolarigrams for the rocks from 
SD-3 differ radically from those for the rocks from SD-4 and Voche-Lambina deposit 
area [Gorbatsevich 1995]. Diagrams for samples 24256S, 26715S, 27227S, 24788S, 
27026, 42918-1 in Figs 10.2-10.4 provide examples of this difference. 
Acoustopolarigrams for samples 21720, 34876, 43579 etc. belong to the same group. 
All of them are characterized by a very high LAAA manifested on one, or, more 
often, two or three sample sides. The observed shapes of acoustopolarigrams are like 
calculated circle diagrams, Fig. 2.2, 2.5. 

A B 

Fig. 10.3. Acoustopolarigrams of SD-3 core samples. 
A: a - amphibole-plagioclase schist with biotite (sample 19402S); b - talc-phlogopite-
tremolite schist (sample .26715S); c - epidote-biotite-amphibole-plagioclase 
crystalloschist (sample 27227S); d - apohyperbasic schist (sample .35924). 
B: a -clinopyroxene amphibolite (sample 24788S); b - amphibolite with sphene (sample 
24947); с - cummingtonite amphibolite (sample 27026); d - epidote-hornblende 
amphibolite (sample 31272). 
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An analysis of the data in Attachment 5 shows that in SD-3 rock samples the 

LAAA effect D varies in the range of all possible values, from D = 0.0 (sample 
24947) to D = 0.95 (side 2-2', sample 31587). As shown on the model media (see 
point 2.4), LAAA is a non-elastic effect that is slightly related to elasticity indexes - 
compression and shear wave velocities.  

The numerical values in Attachment 5 suggest that rocks from SD-3 as well as 
those taken at the surface or from SD-4 show a close correlation between the 
maximum velocities of compression Vpiim and shear Vsijm waves in matrixes Vij, Fig. 
10.5. 

 
Vsjim = 0.56Vpiim                                      (10.1) 

 
with the mutual correlation factors r = 0.84. 

These relationships to the same extent are true for the three distinguished rock 
groups: schists, amphibolites and biotite gneisses (granites). On the whole, it is 
revealed that the largest velocities of compression and shear waves are characteristic 
of schists, to a lesser extent to amphibolites and still to a lesser extent to biotite 
gneisses and granites.  

Fig. 10.4. Acoustopolarigrams of SD-3 core samples.  
A: a - amphibolite with sphene (sample 35426); b - epidote-biotite hornblende 
amphibolite (sample 42413-1); с - epidote-biotite hornblende amphibolite (sample 42918-
1); d - amphibolite with sphene (sample 43553). 
B: a - fine granular apogabbro (sample 31587); b – fine granular apogabbro (sample 
43579); с - biotite hornblende amphibolite, hornblendite (sample 38846); d – 
apogabbroic porphyrite (sample 41487).  

A B 
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An arrangement of the unit values 
of the factors ε1133, γ1223 for the three 
types of SD-3 rocks is given in Fig. 
10.6 in the diagram drawn from the 
data presented in Attachment 6. A 
general scattering of the points in the 
diagram does not allow one to consider 
anisotropy factors for compression 
ε1133 and shear γ1223 waves to be closely 
related. By the mode of their 
arrangement two groups of points and, 
accordingly two lines - I and II, can be 
distinguished in a qualitative sense. 
The lines reflect a proportionality of 
the relationship between the values 
γ1223 and ε1133 in these groups.  

For the first group (line I), 
 

γ1223 ≈ 0.8ε1133.                                                                         (10.2) 
 
For the second group (line II), 
 

γ1223 ≈ 0.31ε1133.                                               (10.3) 
 

As follows from the relationship (10.2), anisotropy of the shear wave velocities is 
close to that of the 
compression waves for the 
first group of points. Rocks 
combined in the group of 
points along line I, have 
characteristics γ1223, ε1133 
close to the same 
characteristics of rocks 
from the Voche-Lambina 
deposit area [Gorbatsevich, 
1995]. As to the second 
group of points, here 
anisotropy of shear wave 
velocities is much less than 
that of compression waves. 
In this case equation (10.3) 
reflects the relationship 
close to that observed 
before for volcanic rocks from the SD-4 section (see point 9.3).  

It is known that the geological section of the Kola superdeep borehole SD-3 is 
characterized by alteration of sedimentary and volcanic units [Kozlovsky, 1987]. This 
is likely to be the reason for the fact that one rock type corresponds to the relation 
(10.2), while the other one - to the relation (10.3). Accordingly, the type of 
relationship between the factors γ1223 and ε1133 can be used for separating volcanic 
rocks from rocks of other types. But this conclusion is tentative. A final conclusion 

Fig. 10.5. Relation between the maximum 
values of compression (Vpiim) and shear (Vsijm) 
wave velocities in the velocity Vij  matrixes for 
rocks from the SD-3 section. 

Fig. 10.6. Distribution of unit values of anisotropy factors 
γ1223 and ε1133 for rocks from the SD-3 section. 
1 - schist, 2 - amphibolite, 3 - biotite gneiss (granite). 
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may be drawn after detailed petrographical and petrological investigation of the first 
and second rock groups. 

The data from Attachment 6 support the conclusion (drawn before when 
analysing the acoustopolarigrams) that most of the measured rocks are highly 
anisotropic and pertain to the rhombic type of symmetry (in Attachment 6 rocks of 
pseudohexagonal symmetry are marked G and those of rhombic symmetry - R). Only 
10 of 58 samples belong to the pseudohexagonal symmetry type, 6 of them (samples 
18994, 21722S, 24221S, 24256S, 25386, 27262) representing a rather interesting 
variety of the transverse-isotropic or pseudohexagonal type - the compression wave 
velocity is maximum in the symmetry axis direction and minimum in the plane 
direction. The system of relations Vij (see Eq. (6.2)) that are true for transverse-
isotropic media represents a set of plane-parallel layers (type I) with discriminate 
properties [Lyakhovsky, Nevsky, 1970; Lyakhovitsky, 1988].  

In the SD-3 rocks of type II in the Vij matrix, the following relations are observed 
(see Eq. (6.3)):  V11 = V22 < V33,  V12 = V21 < V13 = V31 = V23 = V32.                     
Conventionally, this type (type II) can be conceived of as a bunch of parallel 
cylindrical rods that are in an isotropic medium different from the rods in elastic 
properties. The symmetry axis of an endless order will be situated along the rod axes. 
A model of such medium is given in Fig. 6.3. The origin pattern of type I elastic 
symmetry in the stress field seems to be quite logic, but the origin of type II symmetry 
is not quite clear so far. It may be a consequence of some metamorphic 
[Kozhevnikov, 1982; Robin, 1979, 
Eliseev, 1959], or metasomatic 
processes [Vernon, 1980]. 

 
10.3. Variability of elastic anisotropy 
parameters of rocks from the SD-3 
section 

 
As shown in chapter 7, the basis for 

the rock elastic anisotropy is anisotropy 
of minerals. A rock composed of 
strongly anisotropic minerals with an 
identical orientation of crystallophysical 
axes will be most anisotropic. On the 
contrary, a polycrystalline rock of a 
massif structure with differently oriented 
crystallophysical axes of mineral grains 
may be moderately anisotropic or lack 
anisotropy at all. Observations on elastic 
characteristics of the SD-3 core allowed 
revealing an effect called the effect of 
rock disintegration that is directly 
related to anisotropy of mineral grains. It 
is manifested during the core release 
from geostatic stresses in the process of 
drilling and core recovery [Gorbatsevich 
& Medvedev; 1986; Gorbatsevich, 
2003]. 

For instance, systematic laboratory 

Fig. 10.7. Vertical velocity section along 
the SD-3 borehole [Sharov, 1997]. For the 
legend to the geological column see Fig. 
10.1. 
1 - vertical seismic profiling method (VSP); 
2 - acoustic logging method (AL); 3 - 
calculation method (CM) applied for rocks 
of gneiss-granite composition; 4 - 
calculation method for amphibole-bearing 
rocks; 5 - calculation method, average 
confidence bounds for intervals. 
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measurements of compression Vp and shear Vs wave velocities along the core axis 
showed [Kozlovsky, 1987] that the maximum and minimum values of Vp and Vs tend 
to decrease with depth. The measurements, Fig. 10.7, showed that there is virtually no 
difference in the Vp values measured on the core extracted from the near-surface zone 
and those derived in the borehole by acoustic logging (AL). But the difference 
between the Vp lab measurements made on the core extracted from the 9-11 km depths 
and those obtained by AL at the same depths is 200% and more, Fig. 10.1b.  

In polycrystalline rocks of a massif structure the disintegration effect of rocks 
during their release from geostatic and other stresses should be most conspicuous 
[Goryainov, et al. 1992]. Therefore we have measured compression wave velocities 
Vp in the Archaean granite-gneiss fragments of the SD-3 core. Biotite-plagioclase 
gneisses, granites and migmatites contain at least three main types of strongly 
anisotropic minerals: micas (biotite, muscovite etc.), quartz and plagioclase. In Fig. 
10.8 are given measured Vp (in air-dry conditions) as a factor of depth H. 

As this Figure suggests, the tendency for a decrease of compression wave 
velocities in the released core is pronounced. One may consider that the core extracted 
from a depth of H = 11 km with the registered value of Vp = 1.2 km/s experiences a 
release from geostatic stresses exceeding σz = 300 MPa. Deformations rising under 
such release in every anisotropic mineral grain cause a break in initially strong 
intergranular contacts, 
appearance of microcracks 
that greatly lengthen an 
ultrasound propagation way. 
The disintegration effect 
observed in the SD-3 core is a 
manifestation of a more 
general tectono-caisson effect 
[Goryainov, et al. 1992]. 
These effects can help to gain 
a better insight into geological 
and geophysical phenomena 
[Goryainov, 1983]. Their 
practical use is likely to result 
in a rise of new unmanned 
production techniques for 
extraction of mineral 
resources from great depths 
[Gorbatsevich, 2003]. 

As follows from the 
essence of the disintegration 
effect, polycrystalline, massif, 
weakly anisotropic (on the 
whole) rocks should 
decompact primarily. The data 
from Attachment 5 allow 
observing the variability of 
the elastic anisotropy 
parameters B and ε1133 
(Attachments 5, 6) through 
the SD-3 section, Fig. 10.9 a, b. The most representative part of the plot shows that 

Fig. 10.8. Measured compression wave velocities VP 
in the samples from the gneiss-granite complex along 
the SD-3 section (6905-12050 m depth). 
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anisotropy of rocks increases rather smoothly from 5 to 8 km depths, and then it 
decreases sharply to a 12 km depth. Schists and amphibolites are most strongly 
anisotropic rocks. By the data from [Gorbatsevich et al., 2002] a dashed line on the 
plot represents a general envelope of the largest size P (diameter) of the caverns in the 
borehole. 

A general review of the plot data allows a conclusion that at 7.0-9.0 km depths 
rocks with strictly oriented structures occur. The proportion of these rocks at depths 
over 9 km decreases dramatically. At these depths the proportion of rocks in which 
minerals are arranged with mutually incompatible orientation increases. So the core 
extracted from a depth over 9 km will be subjected to disintegration to a greater 
extent. This is supported by experimental data, Figs. 10.1, 10.8. 

 

Strong elastic anisotropy has been also registered by modelled in situ conditions. The 
alterations of compression (Vp), shear wave velocities (Vs) and density (ρ) were 
registered in some samples by increasing confining pressure (temperature) up to 600 
MPa and up to 600о С. The experiments were made in a multi-anvil apparatus by 
Prof. H. Kern at the University of Kiel, Germany [Kern et al., 1997] and in Prof. N. 

Fig. 10.9. Distribution of unit values of index B, factors ε1133 and AP of elastic anisotropy of the 
rock samples along the SD-3 section [Gorbatsevich et al., 2002]. For the legend to the 
geological column see Fig. 5. 
a - index B. 1 - metadiabase, peridotite; 2 - amphibolite, schist; 3 - gneiss, granite, migmatite; 4 
- phyllite, tuff; 5 - metasandstone, metaaleurolite; 6 - porphyrite; 7 - average interval cross size 
of the borehole. 
b - factor ε1133. 1 - schist; 2 - amphibolite; 3 - biotite gneiss, granite; 4 - phyllite; 5 - envelope of 
the cavern greatest size P; 6 - boundary line ε1133 = 0.05. 
The data (a, b) have been obtained on the samples in lab conditions. 
c - factor АP and index B (in %). The data (c) have been determined under in situ conditions. 
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Christensen's lab at Wisconsin University, USA [Christensen, 1985]. The results of 
the experiments [Gorbatsevich et al., 2002] are shown in Fig. 10.9c. Greater 
anisotropy measured on samples in dry air and in situ conditions, expressed by the 
factors AP, B, ε1133, corresponds to greater cavernosity P of the borehole, Fig. 10.9. 
This Figure shows that the caverns' largest size Р = 0.6 m is observed at a depth of ~9 
km where most anisotropic rocks occur. 

Thus, with these two examples, one may state that with respect to SD-3 and SD-
4, the increased cavernosity of the boreholes drilled in crystalline rocks, as a rule, is 
related to elastic anisotropy of rocks.  

Based on the data from Attachment 5, Fig. 10.10 gives unit values D of the 
LAAA for the three rock types - schists, amphibolites, biotite-plagioclase gneisses 
and granites vs depth H. Scattering of points on the plot, on the whole, is similar to 
the scattering of unit values of the factor ε1133 in Fig. 10.9b. As a rule, amphibolites 
show the greatest D values. The average level of D for all rocks is rather high - D ≈ 
0.4-0.5. This suggests that when shear waves propagate through such a massif, waves 
with the polarization vector oriented along the normal to the rock structure will be 
intensely absorbed.  

Let us consider the main results of the investigation into elastic properties and 
anisotropy of rocks from the SD-3 section. First, the rocks are characterized by very 
high anisotropy mainly of rhombic symmetry (Attachment 6). For instance, 
cummingtonite-hornblende amphibolite (sample 
28744А) has ε1133 = 1.55. Accordingly, in its 
matrix o

ijV  (Attachment 5) the compression wave 

velocity is 2.54 times larger than that of the shear 
wave. It is significant that for the side (3-3') V31 = 
2.05 km/s, V32= 2.01 km/s, i.e. the registered shear 
wave velocities virtually do not differ from those 
of compression waves. If we consider this sample 
to be isotropic a priory, then we will obtain a 
negative Poisson's ratio for side 3-3'. There are 
rather many such samples in the SD-3 section.  

Unlike the samples from SD-4, the samples 
from SD-3, as a rule, have pronounced schistosity 
and linearity. The orientation of the symmetry 
elements revealed by acoustopolariscopy mainly 
coincides with visual orientations of schistosity 
and linearity. Some disagreement was noticed in 
migmatized rocks.  

During a long geological time and deformation 
stages including the evolution of the main factors - 
pressure, temperature etc., rocks from SD-3 as well as those from Voche Lambina 
deposit area [Gorbatsevich, 1995] experienced repeated reconstruction, 
recrystallization and acquired a thermodynamically stable form and orientation of 
crystalline grains (see Fig. 8.6). These conditions are the reason for very strong 
anisotropy of rocks from SD-3.  

The SD-3 core recovered from great depths experiences considerable 
disintegration caused by its release from appreciable geostatic stresses. This results in 
the appearance of a large number of intergranular microcracks. The core 
disintegration is most pronounced in polycrystalline rocks. It causes compression and 

Fig. 10.10. Distribution of unit 
values D - LAAA index for rocks 
from the SD-3 section in the 
interval H = 5.5-12 km.  
1 – schist, 2 – amphibolite, 3 – 
biotite gneiss (granites). 
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shear wave velocities to smoothly decrease, porosity to rise and strength to reduce 
[Gorbatsevich, 2003]. As in the case with the SD-4 rocks, greater anisotropy of rocks 
from SD-3 corresponds to greater cavernosity of the borehole. After S.G. Lekhnitsky 
[1977] in the vicinity of a round hole in a homogeneous at infinity stress field, the 
shape of isolines for ultimate strains causing release may take a form of a two- or 
four-petal rosette depending on the syngony type of an anisotropic medium. The SD-3 
cross-sections of caverns have the form of an ellipse with sharp angles and the 
outlines close to a circle [Kozlovsky, 1987]. In this connection the data obtained from 
SD-3 and SD-4 show that a failure of superdeep boreholes is caused not by 
heterogeneity of a stress field but by considerable anisotropy of the rock elastic 
properties.  

Rocks from SD-3 are characterized by high LAAA which manifests itself in the 
form of plane and linear models [Gorbatsevich, 1990] as well as in mixed forms. This 
effect is most conspicuous in amphibolites. As shear waves propagate in media with a 
high LAAA, a wave component with the polarization vector directed along the normal 
to the oriented structural elements is intensely absorbed. In this connection it might be 
interesting to trace the propagation of seismic waves in a massif composed of 
amphibolites and to compare the amplitudes of differently polarized transverse waves 
S1 and S2. 

 
10.4. Comparative determined anisotropy parameters of rocks from the SD-3 
and SD-4 sections  

 
Complete results of experimental measurements of rock anisotropy for SD-4 and 

SD-3 are given in Attachments 2-6. With the data on the Voche-Lambina deposit area 
[Gorbatsevich, 1995] they present more than 3000 units and derived parameters for 
104 rock specimens. Due to the data abundance it is expedient to compare them in 
most common indexes: age of rocks, coupling coefficients К and М between the 
parameters Vsijm, Vpiim, γ1223, ε1133, a number of isotropic, anisotropic, strongly 
anisotropic rocks, rocks of rhombic and pseudohexagonal symmetries and a number 
of linear anisotropy with a small or large index D. These indexes are given in Table 
10.1. In the Table, when assessing a degree of anisotropy, rocks have been divided 
with regard to the below limits (6.12): 

Isotropic medium - 0 < ε1133 < 0.05, 
Weakly anisotropic medium - 0.05 < ε1133 < 0.15, 
Strongly anisotropic medium - ε1133 > 0.15. 
By the LAAA degree rocks have been divided into 3 groups: without 

manifestation of the effect - D <0.1, with an average degree - 0.1 < D < 0.5, with a 
high degree - D > 0.5. 

Thus, Table 10.1 gives the parameters of rocks of three geological ages: the 
Silurian, the Proterozoic and the Archaean. Rocks from SD-4 represent 
metamorphism at greenschist facies, while rocks from the Voche Lambina deposit 
area (VLDA) and SD-3 - mainly at amphibolite facies. Despite a different age, their 
coefficients K do not differ greatly. On the contrary, the difference in coefficient M 
between the Silurian volcanic rocks (SD-4) and, most likely, the Archaean 
sedimentary rocks is great. As shown in the previous section, on the basis of 
coefficient M, separating of volcanic rocks from rocks of other types is possible.  

Elastic isotropic rocks occur only in the SD-4 section, they account for 56% of 
the total number. A smaller group (28%) is represented by weakly anisotropic rocks 
and still a smaller one - by strongly anisotropic rocks. Most samples of Proterozoic 
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(SD-3) and Archaean (VLDA, SD-3) rocks are included in the group of strongly 
anisotropic rocks (80-93%). Isotropic rocks are missing among them. Most of weakly 
anisotropic rocks (20%) are represented by Proterozoic rocks (SD-3), the least amount 
(7%) - by Archaean rocks (SD-3). Independent of a sampling point and age, rocks of 
rhombic symmetry dominate, among the SD-4 rocks they account for 60%. Much the 
same amount is among the rocks from the VLDA and SD-3 (the Proterozoic). Among 
the SD-3 Archaean rocks their proportion is even higher - 88%. In all places, rocks of 
pseudohexagonal symmetry account for less than 40% and among the Archaean rocks 
from SD-3 - only 12%. 
The above data reject the commonly encountered in literature [Batugin & Nirenburg, 
1972; Nevsky, 1974; Thomsen, 1986] conclusion that weakly anisotropic rocks of 
transverse-isotropic symmetry dominate at least in the upper Earth crust. The data 
from Table 10.1 allow the conclusion that the presented rocks (from 55% to 89%) 
manifest the effect of linear anisotropic absorption of a marked or high degree. 
Moreover, the amount of rocks with D > 0.5 among the SD-3 Archaean rocks is 
immensely high - 51%.  

 
Table 10.1 

Experimentally determined anisotropy parameters of rocks from the SD-4 and 
SD-3 sections and Voche Lambina deposit area [Gorbatsevich, 1995]. 

 

 
As follows from the above, in the Ural Superdeep section down to a depth of 3.07 

km mainly isotropic and weakly anisotropic rocks occur, which after their generation 
underwent rather little change and transformation. The other end of the elastic 
property spectrum is represented by SD-3 Archaean rocks. During their evolution they 

  Ural 
Borehole 
(SD-4) 

Voche  
Lambina 
deposit 
area 
 

Kola Borehole (SD-3) 

Age Immenov 
formation, 
Silurian 

Archaean Proterozoic Archaean 

Vsijm = КVpiim 0.57 0.63 0.56 0.56 

Value of  
Coupling  
coefficient 
between 
parameters 

γ1223 = Мε1133 0.29 0.66 М1 = 0.31    М2 = 0.8 

Number of  
rocks 

Total 25 21 15 43 

Isotropic 14(56%) - -  - 
Weakly anisotropic 7(28%) 3(14%) 3 (20%) 3 (7%)
Highly anisotropic 4(16%) 18(86%) 12 (80%)  40 (93%)
Of pseudohexagonal 
symmetry 

10(40%) 8(38%) 5(33%)  5(12%) 

Of rhombic 
symmetry- 

15(60%) 13(62%) 10(67%) 38(88%) 

With D > 0.1 14(56%) 16(59%) 4(57%) 14(38%)

Of these 

With D > 0.5 - - 1(13%) 19(51%) 
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underwent a number of alterations and transformations including stages of progressive 
and regressive metamorphism, migmatization and other processes. They resulted in 
dominating of strongly anisotropic rocks of rhombic symmetry and manifestation of 
high LAAA. 

The data from the Table allow the conclusion that the older the rock and the 
higher metamorphism facies, the larger amount of strongly anisotropic rocks with a 
high LAAA in the given massif.  
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CONCLUSION 
 
At present great interest in elastic anisotropy parameters of natural and artificial 

media is being shown. On the one hand, it is due to the necessity of developing new 
materials that posses the greatest elasticity and strength in the desired direction. On 
the other hand, investigations indicate that natural materials, in particular minerals 
and rocks, have the properties characterized by various symmetry groups, including 
the lowest ones, and by high degree of anisotropy. Great in volume rock masses, up to 
the earth crust parts, can be strongly anisotropic. These peculiarities of great 
geological formations hinder their study by seismic methods.  

Presented here the acoustopolariscopy method enables obtaining all the 
parameters that are necessary for the characteristics of the sample material anisotropy. 
This method is a combination of dynamic and kinematic methods. To implement the 
method we have designed acoustopolariscopes and transducers that can radiate and 
receive purely shear linearly-polarized waves. They allow one to make highly 
accurate measurements, including those on samples up to 1 sm. The latest version of 
this device permits making measurements automatically with data retention and their 
processing on the computer. A computer programme allows one to construct 
acoustopolarigrams, to distinguish symmetry element projections on them and to print 
out the data.  

According to the measurement procedure by acoustopolarization diagrams 
obtained at crossed polarization vectors one can determine the number, orientation 
and mutual arrangement of the medium symmetry elements. An analysis of the 
number and spatial characteristics of these elements permits drawing a conclusion 
about the medium symmetry type without determining compression and shear wave 
velocities in the sample.  

The shape of the acoustopolarigram obtained at the parallel polarization vectors 
allows determining the presence and degree of the linear acoustic anisotropic 
absorption (LAAA) effect and assess heterogeneity of the sample medium. The 
detection of the LAAA effect implies the presence of the system of parallel 
heterogeneities in the specimen under study, for instance, the substance layers with 
different acoustic properties or cracks. The increased amplitudes detected in the 
sample at crossed polarization vectors at the points lying in the projection lines of the 
elastic symmetry elements point to the presence of the shear wave depolarization 
(SWD) effect and, accordingly, to the different orientation of the symmetry elements 
in the material layers or grains. 

At the final stage to calculate a full set of the elasticity constants Cαβ, in 
accordance with the revealed symmetry elements and in additional directions, 
compression and shear wave velocities are measured. The anisotropy factors obtained 
from the velocity values allow one to distinguish weakly and highly anisotropic 
media. The analysis of the relationship among the velocity values measured in the 
direction of the elastic symmetry elements allows, in addition to the determinations 
made by the acoustopolarigrams, corroboration of the results for the symmetry type 
diagnosis.  

Theoretical grounds for the acoustopolarization method have been developed 
only for a simple model of transverse isotropic medium. But, as the measurement 
practice showed, the mathematical expressions we have suggested are representative 
of the shear wave propagation in more complicated media up to the rhombic 
symmetry ones. The acoustopolarigrams for the crystals of quartz, orthoclase, 
microcline show the feasibility of the obtained experimental results for analysing the 
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number of the elastic symmetry elements of trigonal, monoclinic, triclinic etc. 
symmetry media.  

Our observations and the existing analogy in the field of optic phenomena 
allowed suggestion of the theoretical grounds for the LAAA effect and development 
of its two main models - plane and linear ones. Similarly the origin mechanism of the 
shear wave depolarization effect in anisotropic heterogeneous media has been 
revealed.  

Interesting new results have been obtained when conducting acoustopolariscopy 
of rock forming mineral samples. Using analcite, halite, garnet and pyrite samples we 
have showed that unlike optic methods acoustopolariscopy permits determination of 
spatial arrangement of the elastic symmetry elements in minerals of cubic syngony. 
All these sample exhibited a rather weak LAAA effect.  

The measurements on the samples of medium syngony (apatite, quartz, 
nepheline, tourmaline) showed the dependence of some parameters on the frequency 
of the sounding waves. For instance, elastic properties of apatite samples at the 
sounding frequency of 2.67 MHz acquire an orthorhombic symmetry type. This 
mineral samples have not exhibited great LAAA. Nepheline is virtually transverse 
isotropic medium. In nepheline samples at low frequencies (f0 = 0.78-1.26 MHz) the 
LAAA index may reach medium and great values.  

The elastic symmetry class of quartz differs from the crystallographic symmetry 
class determined by its optic properties. This is indicated, for instance, by 
determination of elasticity parameters of a quartz sample which corroborate the 
difference in elastic symmetry orientation determined by optic and elastic properties. 

Tourmaline samples displayed two effects at the same time - LAAA and SWD. 
At one frequencies the LAAA linear type is exhibited, at others - the plane type. It 
should be noted that also in optics tourmaline is noted for a strong manifestation of 
the pleochroism effect. 

The LAAA effect is conspicuous in minerals of low syngony, except for nephrite. 
The highest values of LAAA have been detected in such minerals as amphibole, 
microcline and orthoclase. Some minerals exhibit a clear dependence of LAAA 
manifestation and type on the wave frequency. For instance, in microcline, as well as 
in orthoclase, at one frequency the greatest absorption occurs on structural elements 
of one cohesion, at the other frequency - on the elements of another cohesion. A 
comparatively similar absorption on both elements occurs at f0 = 1.26 MHz. 
Accordingly, as the frequency changes, the type of LAAA manifestation changes, too. 
For instance, when the absorption from one system of structural elements prevails, a 
plane type will be detected. At the mutual and equal influence of two orthogonal 
systems of cohesion a linear type will be registered. This observation suggests a 
different step (stage) in cohesion systems in these silicate minerals.  

The obtained Vij values in mineral samples, on the whole, agree with the 
reference data. But the values of quartz elasticity constants given in the references 
have been measured along the crystallographic axes and do not reflect the greatest and 
least elasticity values for this mineral.  

A rather large number of samples (25 specimens) of rocks from the Ural 
Superdeep Borehole (SD-4) have been analysed by the acoustopolariscopy method. 
Relatively young Silurian volcanic rocks from the borehole that have experienced 
comparatively few changes are characterized by the green-schist facies of 
metamorphism. The measurement results allowed subdividing the rocks (andesite 
basalt, basalt, tuff, and tuffite) into comparatively isotropic (56%), weakly anisotropic 
(28%) and strongly anisotropic (I6%). Strongly anisotropic rocks occur at a depth of 
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2867 m and below. As a rule, they are of pseudohexagonal symmetry. The axis of 
elastic symmetry of strongly anisotropic rocks is aligned almost horizontally. Thus, 
one may assume that substantial horizontal tectonic stresses acted at a depth of 2867 
m and below. Among weakly anisotropic rocks rhombic symmetry predominates 
(60%), suggesting about the same influence of geostatic and tectonic stresses.  

It is significant that the appearance and visible structure of strongly anisotropic 
rocks do not allow distinguishing them from isotropic and weakly anisotropic ones. 
As has been revealed, isotropic (weakly anisotropic) rocks from SD-4 have a rather 
low Poisson ratio. This index for volcanic rocks of this type can serve as a diagnostic 
sign during seismic survey. Anisotropy expressed by relations between the 
compression wave velocities is rather closely connected with that for shear waves. 
But for the rocks from SD-4 anisotropy of elastic properties is much better registered 
with shear waves.  

The index of linear acoustic anisotropic absorption effect is the highest in 
strongly anisotropic SD-4 rocks, but on the whole, LAAA is observed in 57% of the 
samples. Rocks with oriented mineralized cracks show high LAAA. Contrast zones 
have been distinguished by the indexes of anisotropy and LAAA in the vicinity of 
430, 886, 924, I440, 2496 and 3000 m depths. The geological column points to 
interlayers or contacts between different rocks within those zones.  

A great increase in elastic anisotropy of SD-4 rocks begins from a depth of 2867 
m; the zone of intensive cavern formation begins 60 m below this depth. Within this 
zone the cross dimensions of the borehole become three times larger than its nominal 
diameter. A close relation between the rock anisotropy and the borehole cross 
dimension has been found. The discovered correlation provides a basis for developing 
an efficient method for prediction of stability loss zones in boreholes and workings 
according to the measurement results for anisotropy parameters.  

The second group of rocks is the largest (58 samples). It has been taken from the 
Kola Superdeep Borehole (SD-3) core. It presents Proterozoic and Archaean rocks 
that differ in mineral composition: dolomite, phyllite, metasandstone, amphibole-
plagioclase schist, amphibole, biotite gneiss, migmatite, apogabbro, apogabbro 
porphyrite. Acoustopolarization observations showed a total absence of isotropic 
samples in the group – one can see the symmetry element projections on all three 
sides of virtually every sample. As a rule, the observations point to the influence of 
three factors that occur in different combinations and varying degrees: elastic 
anisotropy, linear anisotropic absorption effect and heterogeneities. The shape of the 
rock acoustopolarigrams is typical of strongly anisotropic rocks of mainly rhombic 
symmetry. The VP shape of some acoustopolarigrams is distinctly different from the 
some diagrams for the SD-4 rocks. They are characterized by a high degree of LAAA 
at one, three, or more often for two sample sides. The analysis showed that linear, 
plane or mixed models are observed at a high degree of LAAA. The distribution of 
LAAA unit values and birefringence factor for all SD-3 rocks showed that the effects 
of linear anisotropic absorption and elastic anisotropy are exhibited independently of 
each other. Among the SD-3 rocks 89% of the samples showed the LAAA effect. Of 
them 51% had D > 0.5. 

Determinations of the velocity matrix type in the SD-3 samples showed a 
predominance of rocks with rhombic symmetry both for Proterozoic (67%) and 
Archaean (88%) rocks. In the same rock groups strongly anisotropic rocks account for 
80% and 93% accordingly. Of 58 samples, only 10 have pseudohexagonal symmetry 
type, 6 of which representing a rather interesting variety – the compression wave 
velocity was maximum in the symmetry axis direction and minimum in the plane 
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direction. By convention, this type can be represented as a bundle of parallel cylindric 
rods that are in an isotropic medium differing in elastic properties from the rods.  

As our observations showed, the rock disintegration effect was conspicuous 
during the SD-3 core recovery from the 6-12 km depths. The essence of the 
disintegration effect is the following: at relatively great depths polycrystalline rocks 
under geostatic pressure are in the isostatic state. The contacts between the mineral 
grains are continuous and strong. During drilling and recovery of the core, the rock 
releases from geostatic pressure and every mineral grain expands in accordance with 
its elastic-anisotropic indexes. The strains occurring in every anisotropic mineral 
grain lead to the damage of initially strong intergranular contacts and to the rise of a 
great many microcracks. The result of this process is a very low average shear wave 
velocity registered in the fragments of the SD-3 core recovered from a depth of 12 km.  

As for the SD-4 rocks, the greater anisotropy of the SD-3 rocks corresponds to 
the greater cavernosity of the borehole. From the data obtained for SD-3 and SD-4, 
the following conclusion is quite true: as a rule, the failure in the superdeep boreholes 
is caused not by heterogeneity of the stress field, but by great anisotropy of the rock 
elastic properties. Rocks with the strongest anisotropy and most pronounced structure 
occur in a depth range of 7-9 km. In this range the borehole cavernosity is most 
developed. The indexes of LAAA effect are the greatest at these depths, the maximum 
ones being registered for the amphibolite samples. One should take into account that 
as shear waves propagate in the media with high LAAA, the vibration component 
with the polarization vector directed along the normal to the oriented structural 
elements is intensively absorbed.  

An overall review of the results for acoustopolariscopy of the SD-4, SD-3 and 
other rocks enables one to conclude that the older are the rocks, the higher is the 
metamorphism facies and the greater is the relative amount of highly anisotropic 
rocks exhibiting high LAAA in the massif.  

Among other aspects of acoustopolariscopy application for investigation of 
crystalline rocks we will point out that the study of palaeostresses with this method is 
a promising direction. Acoustopolariscopy allows determining spatial orientation and 
relative values of palaeostress field components in a metamorphosed rock. The 
presented method for the palaeostress study, as well as the palaeomagnetic 
measurement method, allows compiling, for instance, the palaeogeodynamic map of a 
region. 

We believe that the acoustopolariscopy method will be useful when solving some 
problems in testing materials, especially when studying and developing new 
composite, metal-ceramic and other materials of future. 

 
*     *     * 

 
The main result of the investigation is the discovery of new phenomena: linear 

acoustic anisotropic absorption and shear wave depolarization in rock forming 
minerals and crystalline rocks. Elastic symmetry of diopside, quartz, apatite is more 
complicated than the one revealed in their visual study with electromagnetic 
oscillations. At the same time, we have still a long way to go toward a comprehensive 
investigation of elastic properties even of the group of most common rock forming 
minerals. Our investigation is an initial stage on this way.  

The majority of the future applications of the acoustopolarization method, to our 
mind, is in the field of creation and tests of high-strength anisotropic materials. 
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Attachment 1 

 
Unstructions for processing and drawing acoustopolarigrams on a personal computer 

(PC) 
 
1. Turn on the PC and load the qBASIC program. 
2. After loading qBASIC choose the command Open. 
3. Out of the file menu choose the file Ud2-12cm if the measurements have been 

done in the Ud2-12 device. The lines of the computer program in qBASIC will 
appear for entering amplitudes, calculation and drawing three pairs of 
acoustopolarigrams (VP and VC) when performing acoustopolariscopy on a 
cubic sample's sides. 

4. To check up the program operation press the key F5. According to the 
program three acoustopolarigrams should be drawn, the image of the cube 
with the designation of its axes and sides should be displayed on the screen. 
Three successive pressing of the key Enter return the program to the editing 
regime, the program lines appear on the screen.  

5. Find the program line starting with 30 DATA and after one interval set all 36 
values of А1VPM obtained by VP for side 1-1'. 

6. Find the program line 40 DATA, set 36 values of А2VPM. 
7. Set 36 values of А1VCM, obtained at crossed polarization vectors, in the line 60 

DATA. 
8. Set 36 values of А2VCM in the line 70 DATA. 
9. Find the program line starting with 1030 DATA and set 36 values of А1vpm 

obtained for side 2-2'. 
10. Set А2VPM in the line 1040 DATA. 
11. Set А1VCM in the line 1060 DATA. 
12. Set А2VCM in the line 1070 DATA. 
13. Perform all the operations in lines 2030, 2040, 2060, 2070 for the data 

obtained on side 3-3' in the same way as in pp. 5-8. 
14. Find line 442 and put the data on the sample between the quotation marks 

"___". 
15. Turn the acoustopolarigram in accordance with the position of the sample on 

the acoustopolariscope table. For this: 
16. find line 312 and put the required angle G =   for side 1; 
17. find line 1312 and put the required angle G =   for side 2; 
18. find line 2312 and put the required angle G =   for side 3. 
19. Check up the drawing correctness for the three pairs of acoustopolarigrams by 

pressing the key F5. 
20. Enter the menu by pressing the key Alt, choose the command Save As, press 

Enter. In the open window set the name of the new file in which the data will 
be kept. 

21. Leave qBasic, for this purpose press the key Alt, choose the command File out 
of the menu, then the command Exit, press Enter. 

 
Below is the computer program in qBASIC for entering amplitudes, calculation and 
drawing three pairs of acoustopolarigrams (VP and VC) when performing 
acoustopolariscopy on a cubic sample's sides. 
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5 KEY 7, "EDIT " 
10 REM PROGRAMM IS FIT FOR CASE - MAXIMUM DECIBEL-MAXIMUM AMPLITUDE 
15 PRINT "FOR THE DEVICE UD 2-12" 
20 DIM A(100), X(100), B(100), Y(100), P(100), S(100), E(100), 
R(100), T(100), U(100), D(100), J(100), L(100) 
30 DATA 
28,27,28,27,24,23,23,23,24,25,25,26,25,26,26,27,28,29,28,26,23,27,31,
29,28,27,27,28,29,29,29,27,27,26,27,27 
40 DATA 
25,27,25,23,21,20,20,21,22,24,25,25,25,26,26,27,28,29,29,27,25,27,28,
26,24,24,25,26,27,28,27,26,25,26,26,27 
60 DATA 
26,23,22,23,26,24,19,22,29,25,23,23,24,27,24,21,19,27,24,23,23,24,26,
26,23,22,21,25,27,22,24,22,22,22,24,24 
70 DATA 
26,24,25,26,24,20,15,23,28,24,22,21,23,26,20,19,21,25,22,21,21,22,22,
27,22,21,20,23,25,23,23,21,22,21,23,23 
90 N = 36 
100 FOR I = 1 TO N: READ A(I): NEXT I 
105 FOR I = 1 TO N: READ X(I): NEXT I 
110 FOR I = 1 TO N: LET P(I) = (A(I) + X(I)) / 2: NEXT I 
113 FOR I = 1 TO N: READ B(I): NEXT I 
117 FOR I = 1 TO N: READ Y(I): NEXT I 
119 FOR I = 1 TO N: LET S(I) = (B(I) + Y(I)) / 2: NEXT I 
120 REM FOR I=1 TO 36:Z=10*(I-1): PRINT TAB(1),,"L=";Z;  
125 V = P(1) 
130 FOR I = 2 TO N 
140 IF V > P(I) THEN 160 
150 LET V = P(I) 
160 NEXT I 
162 PRINT TAB(10); , "APMAX="; V; 
165 LET Q = S(1) 
170 FOR I = 2 TO N 
175 IF Q > S(I) THEN 190 
180 LET Q = S(I) 
190 NEXT I 
195 PRINT TAB(40); , "ASMAX="; Q; 
200 W = V: IF Q > V THEN W = Q 
205 PRINT TAB(25); , "AMAX="; W; 
210 REM LPRINT "!---------!------------!-----------!----------- 
220 FOR I = 1 TO N 
230 P = ABS(A(I) - W): P1 = 1 / (10 ^ (P / 20)): P(I) = P1 
240 S = ABS(B(I) - W): S1 = 1 / (10 ^ (S / 20)): S(I) = S1 
245 Z = 10 * (I - 1) 
250 M = I * 10 
255 REM PRINT TAB(1),,"L=";Z; TAB(20),"AOP=";P1; TAB(50),"AOS=";S1 
260 REM LPRINT USING "    ###        ##.#        ##.#        
270 NEXT I 
280 SCREEN 11: CLS : KEY OFF 
290 X0 = 105: Y0 = 240: R = 80 
300 I = 1 
310 A = (I - 2) * 3.141592653# / 18 
312 G = 0 
314 K = G * 3.141592653# / 180 
320 S = SIN(A + K): C = COS(A + K) 
340 XA = X0 + R * C * P(I) 
350 YA = Y0 - R * S * P(I) 
360 XB = X0 + R * C * S(I) 
370 YB = Y0 - R * S * S(I) 
380 I = 36 
382 A = (I - 1) * 3.141592653# / 18 
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386 S = SIN(A + K): C = COS(A + K) 
390 XC = X0 + R * C * P(I) 
400 YC = Y0 - R * S * P(I) 
410 XD = X0 + R * C * S(I) 
420 YD = Y0 - R * S * S(I) 
430 LINE (XA, YA)-(XC, YC), 3 
440 LINE (XB, YB)-(XD, YD), 3, , 22211 
442 PRINT TAB(2); "Journal No., page, sample No., name of rock, 
depth, deposit" 
445 LINE (5, 240)-(15, 240), 1: LINE (205, 240)-(215, 240), 1: LINE 
(105, 140)-(105, 150), 1: LINE (105, 330)-(105, 340), 1 
450 REM S$=INPUT$(1) 
470 FOR I = 1 TO 36 
480 A = (I - 1) * 3.141592653# / 18 
484 K = G * 3.141592653# / 180 
490 S = SIN(A + K): C = COS(A + K) 
500 X = X0 + R * C * P(I) 
510 Y = Y0 - R * S * P(I) 
520 IF I > 0 THEN LINE (XA, YA)-(X, Y), 3 
530 XA = X: YA = Y 
570 NEXT I 
575 LINE (205, 240)-(215, 240), 1: LINE (415, 240)-(425, 240), 1: 
LINE (315, 140)-(315, 150), 1: LINE (315, 330)-(315, 340), 1 
600 FOR I = 1 TO 36 
610 A = (I - 1) * 3.141592653# / 18 
620 S = SIN(A + K): C = COS(A + K) 
630 X = X0 + R * C * S(I) 
640 Y = Y0 - R * S * S(I) 
650 IF I > 0 THEN LINE (XB, YB)-(X, Y), 2, , 22222 
660 XB = X: YB = Y 
700 NEXT I 
702 LINE (415, 240)-(425, 240), 1: LINE (615, 240)-(625, 240), 1: 
LINE (525, 140)-(525, 150), 1: LINE (525, 330)-(525, 340), 1 
1030 DATA 
36,38,40,44,44,44,43,41,39,40,45,46,48,48,48,47,44,38,40,42,45,46,47,
47,45,43,41,41,45,47,48,49,48,47,45,40 
1040 DATA 
40,44,44,47,48,47,45,43,40,43,47,48,49,49,48,47,43,38,40,44,46,48,48,
47,45,43,41,42,48,50,50,50,50,48,45,39 
1060 DATA 
47,46,42,37,31,38,43,46,47,47,46,43,37,30,38,44,46,47,47,46,47,37,31,
38,44,47,48,47,46,42,36,30,39,44,46,47 
1070 DATA 
47,46,44,37,32,40,44,46,47,47,46,42,36,32,41,46,48,48,48,47,43,36,34,
41,45,47,48,48,46,42,35,32,40,45,47,47 
1090 N = 36 
1100 FOR I = 1 TO N: READ A(I): NEXT I 
1105 FOR I = 1 TO N: READ X(I): NEXT I 
1110 FOR I = 1 TO N: LET P(I) = (A(I) + X(I)) / 2: NEXT I 
1113 FOR I = 1 TO N: READ B(I): NEXT I 
1117 FOR I = 1 TO N: READ Y(I): NEXT I 
1119 FOR I = 1 TO N: LET S(I) = (B(I) + Y(I)) / 2: NEXT I 
1125 V = P(1) 
1130 FOR I = 2 TO N 
1140 IF V > P(I) THEN 1160 
1150 LET V = P(I) 
1160 NEXT I 
1165 LET Q = S(1) 
1170 FOR I = 2 TO N 
1175 IF Q > S(I) THEN 1190 
1180 LET Q = S(I) 
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1190 NEXT I 
1200 W = V: IF Q > V THEN W = Q 
1220 FOR I = 1 TO N 
1230 P = ABS(A(I) - W): P1 = 1 / (10 ^ (P / 20)): P(I) = P1 
1240 S = ABS(B(I) - W): S1 = 1 / (10 ^ (S / 20)): S(I) = S1 
1245 Z = 10 * (I - 1) 
1250 M = I * 10 
1270 NEXT I 
1290 X0 = 315: Y0 = 240: R = 80 
1300 I = 1 
1310 A = (I - 2) * 3.141592653# / 18 
1312 G = 0 
1314 K = G * 3.141592653# / 180 
1320 S = SIN(A + K): C = COS(A + K) 
1340 XA = X0 + R * C * P(I) 
1350 YA = Y0 - R * S * P(I) 
1360 XB = X0 + R * C * S(I) 
1370 YB = Y0 - R * S * S(I) 
1380 I = 36 
1382 A = (I - 1) * 3.141592653# / 18 
1386 S = SIN(A + K): C = COS(A + K) 
1390 XC = X0 + R * C * P(I) 
1400 YC = Y0 - R * S * P(I) 
1410 XD = X0 + R * C * S(I) 
1420 YD = Y0 - R * S * S(I) 
1430 LINE (XA, YA)-(XC, YC), 3 
1440 LINE (XB, YB)-(XD, YD), 3, , 22211 
1470 FOR I = 1 TO 36 
1480 A = (I - 1) * 3.141592653# / 18 
1484 K = G * 3.141592653# / 180 
1490 S = SIN(A + K): C = COS(A + K) 
1500 X = X0 + R * C * P(I) 
1510 Y = Y0 - R * S * P(I) 
1520 IF I > 0 THEN LINE (XA, YA)-(X, Y), 3 
1530 XA = X: YA = Y 
1570 NEXT I 
1600 FOR I = 1 TO 36 
1610 A = (I - 1) * 3.141592653# / 18 
1620 S = SIN(A + K): C = COS(A + K) 
1630 X = X0 + R * C * S(I) 
1640 Y = Y0 - R * S * S(I) 
1650 IF I > 0 THEN LINE (XB, YB)-(X, Y), 2, , 22211 
1660 XB = X: YB = Y 
1700 NEXT I 
2030 DATA 
40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,
40,40,40,40,40,40,40,40,40,40,40,40,40 
2040 DATA 
40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,
40,40,40,40,40,40,40,40,40,40,40,40,40 
2060 DATA 
34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,
34,34,34,34,34,34,34,34,34,34,34,34,34 
2070 DATA 
34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,
34,34,34,34,34,34,34,34,34,34,34,34,34 
2090 N = 36 
2100 FOR I = 1 TO N: READ A(I): NEXT I 
2105 FOR I = 1 TO N: READ X(I): NEXT I 
2110 FOR I = 1 TO N: LET P(I) = (A(I) + X(I)) / 2: NEXT I 
2113 FOR I = 1 TO N: READ B(I): NEXT I 
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2117 FOR I = 1 TO N: READ Y(I): NEXT I 
2119 FOR I = 1 TO N: LET S(I) = (B(I) + Y(I)) / 2: NEXT I 
2125 V = P(1) 
2130 FOR I = 2 TO N 
2140 IF V > P(I) THEN 2160 
2150 LET V = P(I) 
2160 NEXT I 
2165 LET Q = S(1) 
2170 FOR I = 2 TO N 
2175 IF Q > S(I) THEN 2190 
2180 LET Q = S(I) 
2190 NEXT I 
2200 W = V: IF Q > V THEN W = Q 
2220 FOR I = 1 TO N 
2230 P = ABS(A(I) - W): P1 = 1 / (10 ^ (P / 20)): P(I) = P1 
2240 S = ABS(B(I) - W): S1 = 1 / (10 ^ (S / 20)): S(I) = S1 
2245 Z = 10 * (I - 1) 
2250 M = I * 10 
2270 NEXT I 
2290 X0 = 525: Y0 = 240: R = 80 
2300 I = 1 
2310 A = (I - 2) * 3.141592653# / 18 
2312 G = 0 
2314 K = G * 3.141592653# / 180 
2320 S = SIN(A + K): C = COS(A + K) 
2340 XA = X0 + R * C * P(I) 
2350 YA = Y0 - R * S * P(I) 
2360 XB = X0 + R * C * S(I) 
2370 YB = Y0 - R * S * S(I) 
2380 I = 36 
2382 A = (I - 1) * 3.141592653# / 18 
2386 S = SIN(A + K): C = COS(A + K) 
2390 XC = X0 + R * C * P(I) 
2400 YC = Y0 - R * S * P(I) 
2410 XD = X0 + R * C * S(I) 
2420 YD = Y0 - R * S * S(I) 
2430 LINE (XA, YA)-(XC, YC), 3 
2440 LINE (XB, YB)-(XD, YD), 3, , 22211 
2470 FOR I = 1 TO 36 
2480 A = (I - 1) * 3.141592653# / 18 
2484 K = G * 3.141592653# / 180 
2490 S = SIN(A + K): C = COS(A + K) 
2500 X = X0 + R * C * P(I) 
2510 Y = Y0 - R * S * P(I) 
2520 IF I > 0 THEN LINE (XA, YA)-(X, Y), 3 
2530 XA = X: YA = Y 
2570 NEXT I 
2600 FOR I = 1 TO 36 
2610 A = (I - 1) * 3.141592653# / 18 
2620 S = SIN(A + K): C = COS(A + K) 
2630 X = X0 + R * C * S(I) 
2640 Y = Y0 - R * S * S(I) 
2650 IF I > 0 THEN LINE (XB, YB)-(X, Y), 2, , 22211 
2660 XB = X: YB = Y 
2700 NEXT I 
2705 REM S$ = INPUT$(1) 
3010 X = 50: Y = 420' x - not less 50. y – not more 499 
3020 SCREEN 11: LINE (X, Y)-(X, Y - 25): LINE (X, Y)-(X + 30, Y) 
3030 LINE (X, Y - 25)-(X + 30, Y - 25): LINE (X + 30, Y - 25)-(X + 
30, Y) 
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3040 LINE (X, Y - 25)-(X + 15, Y - 37.5): LINE (X + 30, Y - 25)-(X + 
45, Y - 37.5) 
3050 LINE (X + 30, Y)-(X + 45, Y - 12.5) 
3060 LINE (X + 12.5, Y - 37.5)-(X + 45, Y - 37.5): LINE (X + 45, Y - 
37.5)-(X + 45, Y - 12.5) 
3070 LINE (X, Y)-(X + 15, Y - 12.5), , , 22211 
3080 LINE (X + 15, Y - 12.5)-(X + 45, Y - 12.5), , , 22211 
3090 LINE (X + 15, Y - 12.5)-(X + 15, Y - 37.5), , , 22211 
3100 LOCATE 22, 15: PRINT "[3]": LOCATE 15, 1: PRINT "[2']" 
3110 LOCATE 15, 27: PRINT "[3]":   LOCATE 9, 41: PRINT "[1]" 
3115 LOCATE 9, 67: PRINT "[1]": LOCATE 15, 78: PRINT "[2]" 
3117 LOCATE 10, 5: PRINT "1":  LOCATE 10, 31: PRINT "2" 
3119 LOCATE 10, 59: PRINT "3" 
3120 CIRCLE (X - 14, Y - 270), 14: CIRCLE (X + 194, Y - 270), 14: 
CIRCLE (X + 418, Y - 270), 14 
3130 LINE (X + 7, Y - 12.5)-(X - 20, Y - 7) 
3140 LINE (X + 38, Y - 25)-(X + 60, Y - 25) 
3150 LINE (X + 30, Y - 29)-(X + 30, Y - 49) 
3160 LOCATE 27, 3: PRINT "[3]": LOCATE 23, 10: PRINT "[1]" 
3170 LOCATE 26, 15: PRINT "[2]" 
3200 REM LOCATE 1,1:PRINT "INPUT DATA: h1, tDP1, tDS1, tDOP1, tDOS12, 
tDOS13" 
3210 DATA 10,10,10,20,20,20 
3220 READ H1, TDP1, TDS1, TDOP1, TDOS12, TDOS13 
3230 V11 = (H1) / (TDOP1 - TDP1) 
3240 V12 = (H1) / (TDOS12 - TDS1) 
3250 V13 = (H1) / (TDOS13 - TDS1) 
3310 DATA 10,10,10,20,20,20 
3320 READ H2, TDP2, TDS2, TDOP2, TDOS21, TDOS23 
3330 V22 = (H2) / (TDOP2 - TDP2) 
3340 V21 = (H2) / (TDOS21 - TDS2) 
3350 V23 = (H2) / (TDOS23 - TDS2) 
3410 DATA 10,10,10,20,20,20 
3420 READ H3, TDP3, TDS3, TDOP3, TDOS31, TDOS32 
3430 V33 = (H3) / (TDOP3 - TDP3) 
3440 V31 = (H3) / (TDOS31 - TDS3) 
3450 V32 = (H3) / (TDOS32 - TDS3) 
3580 LOCATE 24, 43: PRINT USING "#.###"; V11 
3590 LOCATE 24, 50: PRINT USING "#.###"; V12 
3600 LOCATE 24, 57: PRINT USING "#.###"; V13 
3610 LOCATE 25, 43: PRINT USING "#.###"; V21 
3620 LOCATE 25, 50: PRINT USING "#.###"; V22 
3630 LOCATE 25, 57: PRINT USING "#.###"; V23 
3640 LOCATE 26, 43: PRINT USING "#.###"; V31 
3650 LOCATE 26, 50: PRINT USING "#.###"; V32 
3660 LOCATE 26, 57: PRINT USING "#.###"; V33 
4180 S$ = INPUT$(1) 
4190 CLS 
4200 SCREEN 2: SCREEN 0 
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Attachment 2 

Density and elasticity indexes of the rock samples from the SG-4 section 

Orientation 
of 
symmetry 
elements, 
degree 

Sa-
mp-
le 
No. 

Rock 
name  

Depth, 
Н ,m  

Den-
sity 
р, 
g/sm3 

Velocity matrix, 
Vij, km/s 

LAAA 
degree 
D  

βn1 βn2 

Normalized  
velocity 0

ijV  
matrix, km/s 
 

1 2 3 4 5 6 7 8 
70 Amygdaloidal 

oligophyric 
andesite-
basalt 

293.3 
 

2.91 5.72 3.54 3.55 
3.44 5,68 3.46 
3.65 3.54 5.58 

0.00 
0.00 
0.00 

0 
90 
107 

88 
0 

77 

5.72  3.54 3.55 
3.44  5.68  3.46 
3.65 3.54  5.58 
 

78 Rare-
amygdaloidal 
plagioclase 
andesite-
basalt-
bipyroxene 

356.8 
 

2.84 6.50  3.68  3.78 
3.78  6.57  3.77 
3.71  3.66  6.24 

0.00 
0.06 
0.02 

36 
75 
117 

109 
180 
39 

6.57  3.78  3.77 
3.68  6.50  3.78 
3.66  3.71  6.24 

 

83 Porphyric 
plagioclase 
basalt-
bipyroxene 

384.8 2.88 6.50  3.56  3.56 
3.52  6.32  3.52 
3.54  3.54  6.23 

0.10 
0.00 
0.00 

 
_ 

 

 
_ 
 
 

6.50  3.56  3.56 
3.52  6.32  3.52 
3.54  3.54  6.24 

92 Plagioclase 
andesite-
basalt-
pyroxene 

405.2 2.83 5.89  3.34  3.29 
3.34  5.84  3.26 
3.35  3.38  5.84 

0.05 
0.03 
0.00 

135 
43 
145

41 
142 
74 

6.08  3.35  3.33 
3.38  5.85  3.35 
3.29  3.30  5.80 

97 Andesite-
basaltic tuff 
with a large 
number of 
fractures 

430.0 2.84 4.99  3.16  2.92 
3.20  5.28  3.01 
3.03  3.05  4.98 

0.26 
0.23 
0.39 

64 
62 
15 

171 
151 
100 

5.28  3.20  3.01 
3.16  4.99  2.92 
3.05  3.03  4.98 

 

105 Psephitic-
psammitic 
andesite-
basaltic tuffite 

435.9 2.93 5.80  3.28  3.22  
3.29  5.96  3.31 
3.31  3.32  5.90 

0.00 
0.00 
0.03 

61 
37 

108 

153 
132 

26 

6.02  3.38  3.31 
3.32  5.96  3.26 
3.31  3.29  5.79 

114 Crystal-clastic 
psammitic-
fine-psephitic 
andesite-
basaltic 
porphyrite 

458.7 2.92 
 

5.25  3.27  3.33 
3.27  5.38  3.36 
3.33  3.40  5.61 

0.03 
0.00 
0.00 

174 
172 
38 

102 
74-
126 

5.61  3.40  3.30 
3.36  5.38  3.27 
3.33  3.27  5.25 

152 Psammitic 
andesite-
basaltic tuffite 
 

637.0 2.84 
 

5.94  3.21  3.21 
3.23  6.03  3.23 
3.23  3.25  6.03 

0.00 
0.09 
0.00 

 

38 
113 
80 

143 
-  

180 

6.10     -     3.26 
3.23  6.03  3.23 
3.28  3.23  5.97 

172 Psephitic 
andesite-
basaltic tuff 

759.3 2.83 6.06  3.35  3.48 
3.40  5.88  3.40 
3.44  3.40  5.83 

0.06 
0.06 
0.11 

138 
17 
83 

50 
105 
165 

6.22  3.23  5.97 
3.47  6.11  3.40 
3.35  3.48  6.06 
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Extension of Attachment 2 
 

1 2 3 4 5 6 7 8 

182 Subalkaline 
quartz diorite  
with massive 
ataxic structure

806.6 
 

2.79 6.01  3.46  3.47 
3.50  6.11  3.48 
3.48  3.52  6.10 

0.07 
0.06 
0,03 

173 
107 
137 

73 
29 
68 

6.13  3.46  3.48 
3.44  6.12  3.52 
3.47  3.49  6.01 

184 Subalkaline 
quartz diorite  
with massive 
ataxitic 
structure 
 

828.9 2.81 5.96  3.47  3.50 
3.47  6.12  3.56 
3.40  3.43  5.99 

0.03 
0.00 
0.12 

158 
46 
170 

62 
127 
78 

6.14  3.45  3,52 
3.42  5.90  3.45 
3.40  3.47  5.75 

192 Fine psephitic 
andesite-
basaltic tuff 
 

886.7 2.81 5.43  3.28  3.34 
3.27  5.91  3.39 
3.26  3.37  5.85 

0.10 
0.00 
0.00 

139 
26 
171 

33 
127 
80 

5.94  3.36  3.26 
3.39  5.91  3.27 
3.22  3.26  5.40 

199 Plagioclase-
pyroxene 
rare-metal 
andesite-
basalt 
 

924.2 2.89 
 

6.03  3.58  3.57 
3.43  5.91  3.44 
3.50  3.59  6.22 

0.19 
016 
0.41 

90 
166 
140 

36 
99 
60 

6.22  3.50  3.59 
3.57  6.03  3.58 
3.44  3.43  5.91 

253 Pyroxene-
plagioclase 
andesite-
basaltic tuff 
 

1123.8 2.86 
 

5.84  3.67  3.60 
3.65  5.97  3.63 
3:63  3.65  5.72 

0.06 
0.00 
0.04 

50 
31 
48 

140 
119 
137 

5.97  3.65  3.63 
3.67  5.84  3.60 
3.65  3.63  5.73 

256 Psephitic 
andesite-
basaltic tuff 
 

1128.2 2,91 5.94  3.56  3.58 
3.54  6.02  3.59 
3.64  3.64  6.22 

0.09 
0.09 
0.15 

19 
7 
149 

103 
107 
61 

6.22  3.64  3.64 
3.59  6.02  3.54 
3.58  3.56  5.94 

401 Fragment of 
pyroxene-
plagioclase 
amygdaloidal 
andesite-
basalt 
 

1440.4 2.77 5.79  3.53  3.64 
3.54  5.82  3.63 
3.65  3.75  5.98 

0.15 
0.04 
0.18 

167 
28 
140 

79 
131 

50 

6.13  3.64  3.52 
3.65  6.09  3.57 
3.49  3.51  5.51 

908 Andesite-
basaltic 
coarse-
psephitic tuff 
with ataxitic 
structure 
 

2468.2 
 

2.97 6,46  3.62  3.64 
3,64  6.58  3.65 
3.69  3.72  6.62 

0.00 
0.10 
0.07 

19 
4 
151 

98 
93 
51 

6.69  3.69  3.69 
3.72  6.62  3.69 
3.59  3.58  6.42 

918 Psammitic 
fine-
psephitic tuff 
of andesite 
basalt 
 

2496.4 2.89 6.23  3.69  3.73 
3.66  6.23  3.73 
3.78  3.70  6.36 

0.0.7 
0.03 
0.16 

178 
153 
135 

94 
65 
38 

6.45  3.67  3.69 
3.68  6.33  3.74 
3.63  3.74  6.35 
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End of Attachment 2 
 

1 2 3 4 5 6 7 8 

934 Prehnitized 
coarse-
psephitic tuff 
of andesite-
basalt 

2530.6 2.90 6.28  3.42  3.51 
3.42  6.04  3.42 
3.45  3.44  6.33 

0.00 
0.06 
0.02 

20 
170 
113 

113 
90 
19 

6.33  3.45  3.44 
3.51  6.28  3.42 
3.42  3.42  6.04 

1119 Psammitic 
andesite-
basaltic tuff 

2843.2 2.85 6.49  3.67  3.67 
3.66  6.49  3.67 
3.67  3.68  6.58 

0.00 
0.03 
0.09 

102 
11 
35 

8 
84 

108 

6.58  3.67  3.68 
3.67  6.49  3.67 
3.67  3.66  6.49 

1136 Psammitic 
andesite-
basaltic tuff  

2866.0 2.82 6.23  3.54  3.50 
3.53  6.49  3.58 
3.44  3.49  6.28 

0.00 
0.04 
0.08 

109 
12 
12 

171 
114 
104 

6.49  3.58  3.53 
3.49  6.28  3.44 
3.54  3.50  6.23 

1138 Fine-
psephitic-
psammitic 
tuff 

2867.8 2.84 5.97  3.60  3.51 
3.49  5.76  3.57 
3.62  3.56  5.91 

0.16 
0.16 
0.20 

47 
138 
140 

135 
49 
48 

6.16  3.62  3.43 
3.61  6.01  3.64 
3.46  3.45  5.21 

1161 Fine-
psephitic-
psammitic 
tuff of 
andesite-
basalt 

2909.0 2.86 5.49  3.03  3.43 
3.24  5.08  2.97 
3.25  3.00  5.06 

0.09 
0.23 
0.18 

142 
167 
127 

49 
73 
32 

5.67  3.42  3.39 
3.45  5.66  3.09 
3.06  3.07  4.26 

1191 Ataxitic 
psammitic-
psephitic 
andesite-
basaltic tuff 

2963.6 2.90 5.40  3.42  2.94 
3.31  5.20  2.92 
3.05  2.60  4.22 

0.20 
0.40 
0.28 

35 
17 
170 

116 
106 
75 

5.40  3.34  2.93 
3.28  5.04  3.18 
2.94  2.97  3.89 

1223 Homogenous 
psammitic 
tuff 

3068.0 2.84 5.48  2.94  3.45 
2.84  4.05  3.05 
3.42  2.97  5.47 

0.11 
0.07 
0.00 

20 
49 
75  

112 
129 
167 

5.66  3.44  2.98 
3.49  5.61  3.02 
2.84  3.08  3.84 

Note. Additional faces were made for samples №№ 105, 152, 172,192, 401, 908, 1138, 1161 
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Attachment 3 

Constants of SD-4 rock samples elasticity 
 

Number 
of 
sample  

Depth Н, m С11 С22 С33 С23 С44 С55 С66 

70 293.3 9.52 9.39 9.07 - 3.56 3.77 3.54 
78 356.8 12.3 12.0 11.0 - 3.98 3.92 3.95 
83 384.8 12.2 11.5 11.2 - 3.59 13.63 3.61 
92 405.2 10.5 9.68 9..52 - 3.13 3.10 3.20 
97 430.1 7.9 7.1 7.04 1.99 2.51 2.61 2.87 

105 435.9 10.6 10.4 9.82 - 3.14 3.21 3.29 
114 458.7 9.19 8.45 8.05 - 3.12 3.21 3.34 
152 637.0 10.6 10.3 10.01 - 2.96 3.04 2.96 
172 759.3 10.9 10.6 10.4 - 3.35 3.47 3.60 
182 806.6 10.5 10.4 10.1 - 3.43 3.37 3.32 
184 828.9 10.6 9.78 9.29 - 3.36 3.36 3.32 
192 886.7 9.91 9.81 8.19 0.22 3.00 2.95 3.20 
199 924.2 11.2 10.5 10.1 - 3.55 3.57 3.61 
253 1123.8 10.2 9.8 9.4 - 3.74 3.79 3.83 
256 1128.2 11.3 10.6 10.3 - 3.67 3.79 3.80 
401 1140.4 10.4 10.3 8.41 - 3.49 3.40 3.68 
908 2486.2 13.3 13.0 12.2 - 3.92 3.94 4.08 
918 2496.4 12.1 11.6 11.6 - 4.06 3.88 3.92 
934 2530.6 11.6 11.4 10.6 - 3.39 3.41 3.51 
1119 2843.2 12.3 12.0 12.0 - 3.83 3.85 3.84 
1136 2866.0 11.9 11.1 10.9 - 3.39 3.52 3.52 
1138 2867.8 10.8 10.3 7.71 1.82 3.37 3.37 3.71 
1161 2909.0 9.19 9.16 5.19 - 2.71 2.88 3.37 
1191 2963.6 8.46 7.37 4.39  2.74 2.50 3.18 
1223 3068.0 9.10 8.94 4.19 - 2.64 2.40 3.41 

Notes:  1. Values Cαβ are given in 1010 Pa.  
2. Names of rocks see in Attachment 2. 
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Attachment 4 
Characteristics of SD-4 rock samples elasticity 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

         Note: Names of rock see in Attachment 2. 

 

Number 
of 
sample 

Depth, 
Н, m 

ε1133 ε2233 ΔT γ1213 γ1223 Type of 
elasticity 

Angle  
Ψ,  
degree. 

70 293.3 0.025 0.018 0.33 -0.032 -0.003 R - 
78 356.8 0.053 0.042 0.24 0.000 -0.004 G - 
83 384.8 0.043 0.014 1.00 -0.003 -0.003 R - 
92 405.2 0.048 0.009 1.39 0.016 0.0119 R 49 
97 430.1 0.06 0.002 1.87 0.047 0.064 G 60 
105 435.9 0.04 0.029 0.30 0.012 0.022 R - 
114 458.7 0.069 0.025 0.94 0.019 0.032 R 80 
152 637.0 0.022 0.01 0.74 0.012 0.00 R - 
172 759.3 0.026 0.0082 1.05 0.018 0.035 R 76 
182 806.6 0.020 0.018 0.084 - -0.025 G - 
184 828.9 0.068 0,026 0.89 - -0.007 R 69 
192 886.7 0.10 0.094 0.062 0.04 0.033 G 56 
199 924.2 0.052 0.020 0.88 0.06 0.008 R 81 
253 1123.8 0.044 0.021 0.70 0.006 0.012 R - 
256 1128.2 0.047 0.014 1.11 0.029 0.018 R 80 
401 1440.4 0.113 0.11 0.073 0.0038 0.029 G 79 
908 2486.2 0.042 0.031 0.30 0.017 0.019 R 86 
918 2496.4 0.021 0.002 1.71 0.0141 0.0177 R 86 
934 2530.6 0.048 0.040 0.189 0.0144 0.172 G - 
1119 2843.2 0.014 0.00 2.00 - 0.0014 G - 
1136 2866.0 0.042 0.008 1.36 0.00 0.018 R 66 
1138 2867.8 0.182 0.154 0.170 0.049 0.019 G 57 
1161 2909.0 0.331 0.329 0.006 0.061 0.103 G 74 
1191 2963.6 0.338 0.296 0.27 0.113 0.071 R 76 
1223 3068.0 0.474 0.46 0.029 0.160 0.120 G 70 
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Attachment 5 

Density and elasticity indexes of the samples from the SG-3 section  
 
Sample 
No 

Rock name Depth H, 
m 

Den-
sity 
ρ, 

g/cm3 

Velocity matrix  
Vij  
km/s 

LAAA 
effect 

D 
 

Bire-
fringe-
nce 
index 
B 
 

1 2 3 4 5 6 7 
D Dolomite  Surface 2.84 6.14  3.54  3.42 

3.56  6.11  3.59 
3.58  3.54  5.83 

- 0.034 
0.001 
0.011 

T-26-2 Melanocratic biotite-
plagioclase gneiss 
 

Surface 2.80 5.05   3.34  2.68 
3.17  4.95  2.63 
2.83  2.65  4.02 

- 0.219 
0.186 
0.066 
 

2264B Fyllite 835.8 2.98 6.72  3.25  3.20 
3.20  6.06  3.19 
3.33  3.16  5.79 

- 0.016 
0.003 
0.052 

2187S Schist after agglomerate 
tuff 

1013.6 2.88 6.47  3.13  3.39 
3.17  5.59  3.11 
3.29  3.11  5.39 

- 0.078 
0.019 
0.056 

10026 Thin interstratification of 
fyllite with aleurolite 

2633.1 2.88 6.05  3.40  3.14 
3.41  5.66  3.22 
3.19  3.20  5.49 

- 0.079 
0.057 
0.003 

18334 Arkose sandstone with 
magnetite 

4853.6 2.77 3.26  2.32  2.03 
2.28  3.16  1.96 
2.07  2.05  2.24 

- 
- 
- 

0.133 
0.15 
0.01 

18994 Albitophyre 5490.0 2.84 4.42  3.04  2.94 
2.54  1.71  1.43 
    -       -    2.53 

- 
- 
- 

0.033 

19131S Amphibole-plagioclase 
schist 

5558.2 2.93 5.09  3.29  3.00 
3.24  4.83  2.82 
3.00  2.69  4.67 

0.04 
0.01 
0.03 

0.09 
0.138 
0.108 

19385 Amphibole-plagioclase 
schist 

5776.0 2.90 5.74  2.76  2.62 
2.81  3.73  2.15 
3.53  2.25  3.30 

- 
- 
- 

0.052 
0.266 
0.442 

19402S Amphibole-plagioclase 
schist with biotite 

5893.0 2.96 4.99  3.06  2.83 
2.93  4.22  2.60 
2.58      -    3.38 

0.13 
0.14 
0.39 

0.08 
0.12 

- 
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Extension of Attachment 5 

 
1 2 3 4 5 6 7 

20915S Amphibole-plagioclase 
schist with chlorite 

6517.8 2.93 5.26  2.46  2.22 
2.44  3.42  1.86 
2.26  1.97  2.59 

0.16 
0.28 
0.08 

0.10 
0.27 
0.14 

21720  Amphibole-plagioclase 
schist with chlorite 

6637.7 2.94 6.13  3.58  3.43 
3.41  5.17  3.36 
3.17  2.95  4.44 

0.02 
0.02 
0.08 

0.04 
0.02 
0.07 

21720 Amphibole-plagioclase 
schist with chlorite 

6637.7 2.94 4.71  2.89  2.63 
2.68  3.80  2.59 
2.69  2.57  3.65 

0.17 
0.55 
0.51 

0.094 
0.034 
0.046 

21720S Amphibole-plagioclase 
schist with chlorite 

6637.7 2.97 5.89  2.91  2.82 
2.95  3.74  2.43 
2.77  2.46  3.29 

0.02 
0.12 
0.04 

0.031 
0.193 
0.118 

21720S Amphibole-plagioclase 
schist with chlorite 

6637.95 2.94 6.66  3.13  3.02 
3.15  4.28  2.67 
3.13  2.68  4.23 

0.03 
0.13 
0.03 

0.036 
0.164 
0.154 

24212 Apodiabasic 
blastoamigdaloidal 
amphibolite (A-12) 

7467.5 3.13 5.27  2.81  2.22 
2.65  3.17  1.70 
2.21  1.85  2.68 

0.06 
0.03 
0.14 

0.234 
0.436 
0.177 

24221S Biotite-plagioclase 
gneiss 

7469.8 2.69 4.05  2.13  1.88 
2.12  2.10  1.80 
2.04  1.51  2.00 

- 
- 
- 

0.124 
0.163 
0.300 

24256S Staurolite-andalusite-
sillimanite-two-mica 
gneiss 

7475.7 2.74 4.54  2.49  2.49 
2.57  3.50  2.16 
2.23  1.94  3.49 

0.65 
0.61 
0.14 

0.000 
0.173 
0.139 

44580А Mesocratic amphibolite 7643.4- 
7651.4 

2.99 4.90  3.04  2.73 
3.03  3.71  2.36 
2.65  2.43  3.13 

0.16 
0.62 
0.42 

0.107 
0.248 
0.087 

44579 Clinopyroxene-
hornblende amphibolite, 
crystalloschist 
(A-4) 

7651.4 2.97 4.68  2.23  2.01 
2.17  3.68  1.54 
1.94  1.86  2.30 

0. 17 
0.04 
0.25 

0.103 
0.340 
0.042 

24788S Clinopyroxene 
amphibolite 
 

7659.2 3.04 6.40  2.88  3.21 
2.94  4.86  2.58 
3.14  2.61  4.54 

0.17 
0.73 
0.79 

0.108 
0.130 
0.184 

24804 Amphibolite 
 

7660.6 3.02 3.85  2.08  1.87 
1.97  2.78  1.68 
1.77  1.58  1.66 

- 
- 
- 

0.106 
0.158 
0.113 

24947* Amphibolite with sphene 
 

7484.6 3.01 5.27  3.05  2.97 
3.06  4.83  2.97 
   -     2.73  4.38 

0.03 
0.02 
0.00 

0.026 
0.058 
  - 
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Extension of Attachment 5 

 
1 2 3 4 5 6 7 

24996S Plagioclase granite with 
amphibole 

7695.5 2.65 5.21  2.72  2.54 
2.84  4.33  2.48 
2.55  2.52  3.36 

0.09 
0.51 
0.03 

0.068 
0.135 
0.012 

25386 Migmatite 7779.4 2.64 3.54  2.07  1.68 
2.53  1.93  2.04 
2.06  2.50     - 

- 
- 
- 

0.208 
- 
- 

 
23469* Apodiabasic blasto- 

amygdaloidal 
amphibolite 

7822.0 3.06 3.67  2.97  0.42 
3.45  5.26  2.89 
3.05  2.76  4.71 

0.42 
0.30 
0.46 

0.210 
0.176 
0.010 

26480 Phlogopite-anthofyllite-
actinolite schist  
(A-11) 

7894.4 2.94 4.37  2.40  2.23 
    -    3.66  2.31  
2.69      -    3.42 

0.75 
0.23 
0.02 

0.073 
- 
- 

26715S Talc-phlogopite-
tremolite schist 

7930.9 2.95 5.73  3.40  2.57 
3.35  4.10  1.76 
    -    1.80  2.22 

0.82 
0.86 
0.13 

0.278 
0.571 
- 

26716S* Talc-phlogopite-
tremolite schist 
 

7931.3 2.80 5.25  3.45    - 
3.39  5.13  2.86 
3.02  2.89  4.32 

0.29 
0.34 
0.01 

0.169 
0.042 

- 

26746** Apodiabasic 
cummingtonite-
hornblende-amphibolite 
(A-3) 

7944.6 2.92 4.40  2.50  2.54 
2.53  3.36  2.33 
2.48  2.15  3.20 

0.15 
0.09 
0.04 

0.026 
0.082 
0.142 

27026S Cummingtonite 
amphibolite 

7959.1 2.89 5.38  3.13  2.39 
3.06  4.66  2.24 
2.15  2.12  4.41 

0.49 
0.68 
0.16 

0.268 
0.310 
0.014 

27227S* Epidote-biotite-
amphibole-plagioclase 
crystalloschist 

8017.0 2.99 5.39  2.84  2.48 
2.61  4.64  2.01 
2.37  2.18  4.21 

0.31 
0.63 
0.56 

0.135 
0.259 
0.084 

27262** Phlogopite-anthofyllite-
actinolite schist 
(A-11) 

8022.4 3.12 5.19  2.72  2.65 
2.78  3.42  2.18 
2.68  2.33  3.37 

0.05 
0.08 
0.02 

0.026 
0.241 
0.139 

28184S Epidote-biotite-
plagioclase gneiss 

8234.0 2.67 3.99  2.58  2.25 
2.53  3.72  2.13 
2.29  2.28  3.40 

0.17 
0.14 
0.26 

0.136 
0.172 
0.390 

28744А Apodiabasic  
cummingtonite-
hornblende amphibolite  
(A3) 

8359.4 2.91 5.63  3.35  2.09 
3.36  4.58  2.04 
2.05  2.01  2.21 

0.44 
0.38 
0.42 

0.463 
0.488 
0.020 

29686* Amphibolite with sphene 8538.0 3.00 4.54  2.59  1.99 
3.69  1.76  2.16 
2.15  3.56    - 

0.19 
0.28 
0.65 

0.262 
- 

 0.005 
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Extension of Attachment 5 
 

1 2 3 4 5 6 7 
30137 Epidote-biotite-

plagioclase gneiss 
8589.5 2.67 3.23  1.79  1.56 

1.65  2.77  1.80 
1.56  1.91  2.49 

- 0.137 
0.187 
0.200 

31122 Magnetite-ilmenite-
hornblende amphibolite, 
apogabbro (A-8) 

8727.5 3.05 5.31  2.93  2.75 
2.86  3.98  2.44 
2.62  2.41  3.43 

0.06 
0.47 
0.51 

0.063 
0.158 
0.083 

31268 Amphibolite with sphene 8760.9 3.06 6.18  3.27  3.31 
3.38  5.82  3.36 
3.44  3.37  4.89 

- 
- 
- 

0.012 
0.006 
0.021 

31260 Epidote-hornblende 
amphibolite 
(A-5) 

8759.9 3.00 4.75  2.73  2.30 
2.72  3.63  2.10 
2.13  1.84  3.02 

0.10 
0.26 
0.13 

0.170 
0.257 
0.146 

31272 Epidote-hornblende 
amphibolite 
(A-5) 

8761.4 3.02 5.30  3.38  2.56 
3.20  4.85  2.40 
2.50  2.43  3.53 

0.24 
0.26 
0.21 

0.276 
0.285 
0.028 

31537А** Amphibolite with sphene 8856.0 3.05 3.73  1.84  2.19 
2.14  2.76  1.52 
1.99  1.50  2.51 

0.18 
0.95 
0.20 

0.173 
0.338 
0.280 

31568 Epidote-hornblende 
amphibolite 
(A-5) 

8862.8 2.98 3.79  2.41  2.17 
2.31  3.04  1.85 
2.05  1.92  2.42 

0.31 
0.57 
0.23 

0.104 
0.221 
0.065 

31587 Garnet-clinopyroxene-
hornblende amphibolite, 
fine-grained apogabbro 
(A-9a) 

8867.0 3.03 4.82  2.77  2.35 
2.81  4.08  2.18 
   -     2.00  2.69 

0.47 
0.45 
0.09 

0.164 
0.252 

- 

31863 Amphibolite with sphene 8939.6 2.98 5.32  3.02  3.04 
3.03  4.61  2.78 
3.11  2.82  4.46 

- 
- 
- 

0.007 
0.086 
0.098 

31868 Amphibolite with sphene 8940 3.06 5.06  2.89  2.54 
2.77  3.51  2.29 
2.65  2.26  3.29 

0.06 
0.39 
0.18 

0.128 
0.189 
0.158 

34191А Garnet-clinopyroxene-
hornblende amphibolite, 
fine-grained apogabbro 
(A-9a) 

9169.8 3.01 4.82  2.87  2.40    
    -    3.83  1.66 
2.39  1.78  2.96 

0.06 
0.25 
0.24 

0.178 
    - 
0.158 

34876 Biotite-hornblende 
amphibolite, 
hornblendite (A-6) 
 

9268.3 3.12 4.44  2.42  1.82 
2.38  2.86  1.74 
1.80  1.75  2.10 

0.48 
0.88 
0.87 

0.283 
0.310 
0.028 

35426* Amphibolite with sphene 9451 3.08 3.98  2.05  2.38 
2.25  3.65  1.76 
2.33  1.90  3.38 

0.04 
0.11 
0.07 

0.148 
0.244 
0.203 
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End of Attachment 5 
 

1 2 3 4 5 6 7 
35679 Biotite-hornblende 

amphibolite, 
hornblendite (A-6) 

9534.3 3.12 5.40  2.53  2.19 
2.49  3.56  2.49 
3.08  1.98  3.08 

0.43 
0.23 
0.15 

0.144 
0.000 
0.434 

35924** Phlogopite-
anthophyllite-actinolite 
amphibolite, 
apoultrabasic schist (A-
11) 

9672 3.02 4.92  3.01  2.30 
2.89  4.55  2.18 
2.43  2.36  3.76 

0.51 
0.01 
0.13 

0.267 
0.280 
0.029 

42413-1* Epidote-biotite-
hornblende amphibolite, 
most ancient (A-1) 
 

9813.1 2.96 5.42  3.14  3.18 
3.04  4.78  2.79 
2.90  2.60  4.03 

0.23 
0.10 
0.59 

0.01-3 
0.086 
0.109 

36398 Granite-migmatite after 
epidote-biotite –
plagioclase gneiss  

9865.0 2.63 3.10  2.02  1.63 
2.07  2.64    - 
1.64  1.49  2.09 

- 
- 
- 

0.213 
    - 
0.096 

42918-1 Epidote-biotite-
hornblende amphibolite, 
most ancient (A-1) 
 

10209.3 2.91 4.76  2.85  2.71 
   -     3.84  2.28   
2.54  2.35  3.65 

0.04 
0.74 
0.73 

0.05 
   - 
0.078 

 
Note: No* - direction of symmetry elements is not parallel to the sample edges 
          No** - one of directions of the symmetry elements is not parallel to the sample edges 
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Attachment 6  
Constants and characteristics of SD-3 rock samples elasticity 

 
Num-
ber 
of 
sam- 
ple 

С11 С22 С33 С44 С55 С66 ε1133 ε2233 γ1213 γ1223 ΔТ Type 
 of elas-
ticity 

1 2 3 4 5 6 7 8 9 10 11 12 13 
D 10. 10. 9.6 3.6 3.48 3.58 0.0 0.04 0.01 - 0.10 G
Т-26-2 7.1 6.8 4.5 1.9 2.12 2.97 0.2 0.23 0.18 0.23 0.10 G 
2264B 13. 10. 9.9 3.0 3.18 3.10 0.1 0.04 - 0.01 1.10 R 
2187С 12. 9.0 8.2 2.7 3.21 2.86 0.2 0.03 - 0.01 1.37 R
10026 10. 9.2 8.6 2.9 2.88 3.33 0.1 0.03 0.07 0.06 1.07 R 
18334 2.9 2.7 1.3 0.5 1.16 1.46 0.4 0.41 0.12 0.15 0.10 G 
18994 5.5 1.8 1.8 0.7 2.45 2.62 0.7 0.00 0.03 0.94 1.98 G 
19131 7.5 6.8 6.3 2.2 2.64 3.11 0.0 0.03 0.08 0.19 0.89 R
19385 9.5 4.0 3.1 1.4 1.92 2.25 0.7 0.13 0.78 0.03 1.40 R 
19402S 7.3 5.2 3.3 2.0 2.17 2.66 0.4 0.25 0.10 0.15 0.63 R 
20915 8.1 3.4 1.9 1.0 1.50 1.76 1.0 0.32 0.08 0.28 1.05 R
21720 11. 7.8 5.7 2.9 3.20 3.58 0.3 0.16 0.06 0.10 0.79 R 
21720’ 10. 4.1 3.2 1.7 2.32 2.55 0.7 0.13 0.04 0.07 1.42 R 
21720 6.5 4.2 3.9 1.9 2.08 2.27 0.2 0.04 0.04 0.19 1.50 R
21722 13. 5.3 5.2 2.1 2.78 2.90 0.5 0.01 0.01 0.17 1.92 G 
24212 8.6 3.1 2.2 0.9 1.54 2.33 0.9 0.18 0.23 0.53 1.36 R 
24221 4.4 1.1 1.0 0.7 1.03 1.21 1.0 0.05 0.08 0.28 1.81 G 
24256 5.6 3.3 3.3 1.1 1.53 1.75 0.3 0.00 0.02 0.23 1.96 G 
44580 7.1 4.1 2.9 1.6 2.16 2.75 0.5 0.18 0.13 0.29 1.01 R 
44579 6.5 4.0 1.5 0.8 1.16 1.44 1.0 0.60 0.11 0.29 0.53 R 
24788 12. 7.1 6.2 2.0 3.06 2.57 0.4 0.07 - 0.12 1.41 R 
24804 4.4 2.3 0.8 0.8 1.00 1.24 1.3 0.67 0.11 0.24 0.65 R 
24947 8.3 7.0 5.7 2.4 2.65 2.82 0.2 0.10 0.03 0.07 0.66 R 
24996 7.1 4.9 2.9 1.6 1.71 2.05 0.5 0.28 0.09 0.11 0.62 R 
25386 3.3 1.6 1.6 1.0 0.90 1.13 0.4 0.01 0.11 0.03 1.89 G 
23469 9.9 8.4 6.7 2.4 2.77 3.88 0.2 0.11 0.18 0.26 0.57 R 
26480 5.6 3,9 3.4 1.5 1.78 1.69 0.2 0.07 - 0.03 1.19 R 
26715 9.6 4.9 1.4 0.9 1.95 3.36 1.5 0.85 0.15 0.84 0.60 R 
26716 7.7 7.3 5.2 2.3 2.55 3.27 0.2 0.18 0.13 0.19 0.14 G 
26746 5.6 3.3 2.9 1.4 1.84 1.85 0.3 0.05 0.00 0.12 1.53 R 
27026 8.3 6.2 5.6 1.3 1.49 2.77 0.2 0.05 0.36 0.42 1.18 R 
27227 8.6 6.4 5.3 1.3 1.76 2.22 0.2 0.10 0.11 0.29 0.93 R 
27262 8.4 3.6 3.5 1.5 2.21 2.31 0.5 0.01 0.03 0.21 1.89 G 
28184 4.2 3.6 3.0 1.3 1.38 1.74 0.1 0.09 0.12 0.16 0.59 R 
28744 9.2 6.1 1.4 1.1 1.25 3.28 1.5 1.07 0.62 0.65 0.36 R 
29686 6.18 4.0 3.8 1.1 1.29 2.02 0.1 0.03 0.24 0.32 1.53 R 
30137 2.7 2.0 1.6 0.9 0.65 0.79 0.2 0.11 0.10 - 0.90 R 
31122 8.5 4.7 3.5 1.7 2.18 2.53 0.5 0.16 0.07 0.19 1.09 R 
31268 11. 10. 7.6 3.4 3.48 3.38 0.2 0.06 -0.16 -0.12 0.36 R 
31260 6.77 3.9 2.7 1.1 1.47 2.23 0.5 0.20 0.22 0.38 0.96 R 
31272 8.4 7.1 3.7 1.7 1.93 3.27 0.5 0.37 0.30 0.36 0.29 R 
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End of Attachment 6 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 
31537А 4.24 2.32 1.92 0.69 1.33 1.21 0.48 0.099 -0.048 0.318 1.32 R 
31568 4.28 2.75 1.74 1.06 1.33 1.66 0.57 0.25 0.118 0.255 0.75 R 
31587 7.04 5.04 2.19 1.32 1.67 2.36 0.79 0.52 0.187 0.335 0.42 R 
31863 8.43 6.33 5.93 2.34 2.82 2.73 0.193 0.034 -0.016 0.079 1.41 R 
31868 7.83 3.77 3.31 1.58 2.06 2.28 0.54 0.27 0.08 0.197 1.56 R 
34191А 6.99 4.41 2.64 0.89 1.73 2.48 0.63 0.294 0.196 0.67 0.73 R 
34876 6.15 2.55 1.38 0.95 1.02 1.80 1.11 0.36 0.33 0.38 1.02 R 
35426 4.88 4.10 3.52 1.27 2.11 1.42 0.75 0.156 -0.089 0.082 1.31 R 
35679 9.10 3.95 2.96 1.56 2.17 1.97 0.177 0.079 -0.049 0.120 0.76 R 
35924 7.31 6.25 4.27 1.56 1.69 2.63 0.308 0.210 0.252 0.299 0.38 R 
42413-1 8.69 6.76 4.81 2.15 2.74 2.83 0.35 0.186 0.016 0.148 0.60 R 
36398 2.53 1.83 1.15 0.58 0.70 1.10 0.48 0.263 0.247 0.376 0.60 R 
42918-1 6.59 4.29 3.88 1.56 2.00 3.18 0.304 0.052 0.059 0.23 1.42 R 
43553 4.36 3.99 3.54 1.16 1.23 1.74 0.11 0.061 0.186 0.222 0.56 R 
43579 5.21 3.85 3.16 1.32 1.62 1.61 0.285 0.104 -0.004 0.099 0.93 R 
41487-4 14.6 13.3 11.6 4.18 4.19 4.43 0.120 0.070 0.029 0.032 0.52 R 
44340-2 6.40 6.29 6.10 2.58 2.43 2.65 0.024 0.016 0.046 0.14 0.44 R 

 

Notes:   1. Values Cαβ are given in 1010 Pa.  
2. Names of samples see in Attachment 5. 
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