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INTRODUCTION

Physical anisotropy is one of the most interesting forms of matter organization
that has not received sufficient study yet. Its implications and peculiarities were most
conspicuous in a mineral study. For this purpose since the beginning of the 19-th
century a microscope has been used. In 1828 after William Nikol had introduced
polarizers in a microscope, optical methods occupied an important place in the
mineral study. Internal laws of their structure enabled Ye.S.Fyodorov and
V.Goldschmidt to make a complete classification of 230 spatial point groups of
symmetry related to anisotropy of optical, dielectrical, magnetic, elastic, thermal and
other properties. Of these the study of anisotropy of elastic properties is most
important since these properties are associated with the behaviour of a large number
of diverse construction units, natural objects and materials under load. The theory of
elastic anisotropy of media has been thoroughly elaborateed in the works of Rayleigh,
A.E.H.Love, W.Voigt, Y.F.Nye, F.I.Fyodorov, S.G.Lekhnitsky, G.I.Petrashen et al. A
much worse situation is in the field of experimental methods of its study. On the one
hand, the use of optical polarization methods for this purpose is limited by the fact
that the optical elasticity constants of medium are described by the tensor of not
higher than the second rank, while the elasticity constants of a medium of lower
symmetry — by the fourth-rank tensor. On the other hand, the study of many objects,
in particular rocks, by optical methods is limited by their opacity.

The elaboration of a theory and methods for the study of elastic anisotropy of
solid media and in particular minerals and rocks is in large demand — without them an
adequate interpretation of geophysical, seismic and seismological data is impossible.

Considerable progress in these fields was provided by the works of L.Bergmann,
L.M.Brekhovskikh, A.N.Guz', K.E.Ermilin, G.V.Farnell, H.Kolsky,
F.M.Lyakhovitsky, V.E.Lyamov, W.P.Mason, H.J.McSkimin, F.D.Murnaghan,
Zh.G.Nikiforenko, V.M. Prokhorov, N.N.Puzyryov, R.T.Smith, et al. To determine
anisotropy paramaters the dynamic ultrasound method is used. The method was
greatly improved in the works of K.S.Aleksandrov, B.P.Belikov, B.Chick, C.Elbaum,
E.P.Papadakis, O.G.Shamina, N.N.Silaeva, S.Ya.Sokolov, R.Truel, I.N.Yermolov, et
al.

This work outlines the theoretical grounds of propagation of elastic, mainly
transverse (shear) waves in solid bodies, particular emphasis being placed upon
practical measurements of anisotropic media properties. The fundamentals of
acoustopolarisation measurements method are given. The physical essence of a linear
anisotropic absorption effect (acoustic dichroism) is explained. Based on the analysis
of laws of reflection in half-space and reflection-transmission on the media boundary,
the ways of creating efficient transducers and receivers of purely shear linear-
polarized waves are considered. The constructions of combined transducers for
transition and reception of longitudinal and shear waves as well as transducers for
determination of elastic constants of anisotropic media have been analyzed, developed
and tested. Their advantages and disadvantages are shown on the basis of comparative
tests results. Acoustopolariscopes of three modifications and the ways of conducting
acoustopolarization measurements are described. The ways of processing the
measurement results, identification of a symmetry type and elasticity constants of
anisotropic media are set forth. The rules for constant calculation, for analyses of
media with rhombic, tetragonal, pseudohexagonal, cubic and isotropic symmetry are
given. At the same time it is shown that according to the number of the revealed



symmetry elements it is possible to analyze media with lower symmetry forms, for
instance, trigonal et al.

The concluding sections are dedicated to the experimental study results for elastic
anisotropy of rock forming minerals and rocks from some deposits (Voche-Lambina
testing ground, Kola Peninsula, Kola and Ural superdeep boreholes). The possibility
to determine the direction and comparative value of palaco- and modern stresses is
shown on the rocks from the Voche-Lambina testing ground and Ural Borehole SG-4.

The book is intended for the specialists working in the field of theory and practice
of determining solid body properties. It may be useful to specialists in acoustics,
geophysicists and geologists.
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1. PHYSICAL PRINCIPLES OF ACOUSTOPOLARISATION
MEASUREMENTS METHOD

1.1. Propagation of elastic waves in transverse-isotropic medium

In general terms, the propagation of elastic waves in anisotropic media is
described by Green-Christoffel equation [Dieulesaint et Royer, 1974]:

(T - SupV*)U; = 0, (1.1)

where [ = nmCy; is Christoffel's tensor, Cy; are the elasticity constants of an
anisotropic solid body, n; n; are the directional cosines, J; is Kronecher's symbol, p

is the medium density, ¥ is the wave propagation velocity, U; is the displacement of
medium particles in the wave.

For a relatively simple but practically common transverse-isotropic medium the
components /j; will take the following values:

2 2 2
Ly = Chy +mCoo +m5C,,,
T, =n’C.+nC, +nC

2 TMlg ™0 TR0,
I..=nC, +n:C, +nC

33 = MLy 1,0, 3033,
[, =(Ch+Ce)n ny,
Ly =(Cy+Cy)nmny,

[y =(Cp +Cy)m ny, (1.2)

where Cj; are the elasticity constants of an anisotropic solid body, »; are the directional
cosines.

These values of I3 can be substituted in Eq. (1.1) and the complete Green-
Christoffel equation for transverse-isotropic medium can be thereby obtained. Three
independent solutions — three values of elastic wave propagation velocities in one
direction will determine proper values of Christoffel's tensor. Consider two simple
cases of elastic wave propagation in a transverse-isotropic medium.

1. An elastic wave propagates along the symmetry axis OXs. In this case n; = ny =0,
n3 = 1. From the Green-Christoffel's equation we shall get that

(Cs3 - pV*) (Caa - pV?) (Cas - pV?) = 0.

Whence it follows that the values of elastic waves propagation velocity will be:

Va=ACss/p, Vi=Vy=1Culp (1.3)



Thus, during the elastic waves propagation along the symmetry axis only two

velocities will be observed V,1 and V1 = Vi, Measuring only these velocity
parameters it is impossible to conclude whether this medium is anisotropic.
2. An elastic wave propagates along the axis OX| (the direction of its propagation is in
the medium symmetry plane). Such a case is most interesting when analyzing
anisotropic media. In this case n; = 1, n, = n3 = 0. From general equation (1.1) we
deduce that

(Ci1 - pV?) (Ces - pV?) (Cas - pV?) = 0.

The last equation has three solutions:

Vo :\/Cn/pa Vy= C44/p, Vo :\/CGG/IO’

where V) is the longitudinal wave velocity along the symmetry plane; Vj; is the shear
wave velocity with the polarization vector oriented along the normal to the symmetry
plane; Vy, is the shear wave velocity with the polarization vector lying in the
symmetry plane. Similarly, with n; =1, n,=n3;= 0 from Eq. (1.2) we obtain that I}, =
Ci1, I'n = Ceg, I'33 = Cas. Then the Green-Christofel's equation may be replaced by
three motion equations:

(1.4)

U, U,
P a2 =tn &2’
U, U,
P a2 =Cu ?a
U, U,
P =Cou 3 (1.5)
The simplest solutions of wave equations (without regard for absorption) for
harmonic  stationary =~ waves  are !
expressions: [100] [100]
: 7o ' -
A, =4,sin(ar - =+9), WA\ \ ™ 3
2 \NO\ ¢
’ : \.Ifj r!
. : '
27f  x \ , [OOﬂ
A, =A4,sin(wt - 7y + @), \\ Ll
sl -
2 0 X
A, =A,sin(wt - Yo + ),
52
(1.6) Fig. 1.1. Registration diagram of a quasi-

where @ = 27f; is the wave circular
frequency, x is the distance and ¢y is
the initial phase shift.

shear wave propagating through a sample
symmetry  at
arbitrarily oriented polarization vectors (OPV)

with

of transducer and receiver.

transverse-isotropic



1.2. Phase difference and phase shift in the wave of shear vibrations

Let us consider a relatively simple but rather well known case where shear waves
propagate in a medium with transverse-isotropic symmetry. The waves will be
considered to transmit from a transducer of linear-polarized stationary harmonic shear
waves to the sample made of transverse-isotropic medium in the direction coinciding
with the elastic symmetry plane [010] (Fig 1.1).

In this case perturbations arising in the sample will be described by the
superposition of amplitudes 4; and As,. The polarization type of the total shear wave
will depend on the position of the vector 4 with respect to the medium symmetry
elements and the wave x propagation direction. If the vector 4 lies in the plane [010],
then the wave harmonic phase along this direction will be described by the expression

Y=ot ——+¢,.

A

Along the direction [100] the harmonic phase is

27mx
Y, =0t ——+¢,,

A

where A, = Vy/fo, Z2 = Voo/fo. At a distance of x from the section [010]-[100] a phase
difference appears

5= W - ¥ =2mx(1/A — 1/A) (1.7)

At the increase of the phase difference ¢ along the propagation way, the change
of polarization type and polarization vector orientation (PVO) of the total shear wave
will be observed. If we give the vector 4 (Fig.1.1) an angle £ = 45° or 135°, then,
when the phase difference 0 < 6 < 7/2 (Fig. 1.2), the wave polarization will transform
from linear to elliptic right-hand and the orientation of the ellipse's longer axis will
coincide with the PVO when 6= 0.

When the phase difference reaches the value of 6 = #/2 a circular right-hand
polarization will be observed. When the phase difference 772 < 6 < zthe polarization
will again become elliptic. But now the ellipse's longer axis will be rotated through
90° as compared with the PVO when 6= 0. Furthermore, when & = 7 the polarization
will become linear, the PVO being 90° in relation to the PVO when &= 0. Within the
phase difference 7 < & < 2 a counter-clockwise rotation of the polarization vector is
observed. The type and parameters of polarization are the same for 6 = 574 and 0 =
344 (elliptic), for 6 = 77/4 and 6 = w4 (elliptic), for 6 = 372 and 6 = 72
(circular). As Fig 1.2 suggests, the type of polarization, the direction of rotation and
orientation of polarization vectors fully coincide when the phase difference is equal to
2. If the phase difference along the sample length is exactly equal to 6 = 27, the
type and parameters of polarization do not allow one to distinguish an anisotropic
sample from an isotropic one.

Let us consider the propagation process of a quasi-shear wave in the sample, Fig.
1.1, when the polarization vector of the transducer 4 and receiver B is arbitrarily
oriented. For instance, the polarization vector orientation of the transducer makes an



angle £ with the symmetry plane [010] of the sample; its amplitude is equal to 4s. The
polarization vector orientation of the receiver makes an angle y with the same plane
[010], its sensitivity is equal to Az. Having done the decomposition of the polarization
vector of the transducer 4 in terms of the symmetry elements [010] and [100] and at a
distance of x composition of projections on the direction B, we shall obtain, with
regard to Eq. (1.6), the summary amplitude of the waves 4pregistered by the receiver:

A, = Ag A, [cos fcos ysin(wt —2/1—7DC+ @, )+ sin Ssin y sin( ot —iﬂ+¢)o )]. (1.8)
1 2

Let us follow the variation of the amplitude Ap as the sample rotates around the
direction [001].

Fig. 1.2. The change of polarization type during shear wave propagation in an
anisotropic sample.

If the orientations of the transducers' vectors 4 and B coincide, i.e. the
polarization vectors of the source and receiver are parallel (VP position), then from
(1.8) we obtain

2m

7 + )] (1.9)

y . 2mx o
Ay, = A Ay [cos ﬂs1n(a)t—7+goo)+sm Psin(wt —

If the polarization vectors of the source and receiver are directed at a right angle,
crossed (VC position), then from (1.8) we obtain

1 . . 2mx - 20
Aye = As Ay sin2fsin(at - T @,) — sin(awt — 2" ?)} (1.10)

As follows from Eq. (1.9)-(1.10) the amplitudes Ayp and Ayc depend on the
sample length x, rotation angle f relative to the plane [010] and current wave phase



at. In a general case when £ = 0 the waves wr get a phase shift. The value of the
phase shift depends on the angle £ and the value of the phase difference 6.
The solution of Eq. (1.9) and (1.10) when Ayp= 0 and 4yc= 0, allows one to find
the values of this phase shift for the VP (@,9) and VC (@)
A, = AgA, [cos’ Bsin wt +sin’ BcosIsin wt + sin’ sin Scoswt]=0,

whence

—sin o

,, =arctg tnr. (1.11)

ctg’ f+cosd
Similarly for 4ycwe obtain

A, = %ASAR sin2 B[sinwt —sin wt cos § —coswtsind]=0,

whence

sin &

., =arctg tnr, (1.12)

1+cos5_n

where the value of o is defined by the
expression (1.7),n=0, 1,2, 3....

In Fig 1.3 is shown the relation for
the phase shear ar. (w,o), calculated by
formula (1.11), that will be observed
when the source and receiver vectors are
parallel [Gorbatsevich, 1995].

As follows from this Figure, when 6= 0,
180°, @, = 0, at any f. The greatest
changes in the shear phase value @, are
observed when £ — 90° (270°) and 6 —
90° (270°). The shear phase value @, is Fig. 1.3. Dependence of the phase shear
even with respect to the sign of angle f, value ot; = @y, vs angles B and & in the VP
but in accordance with the value Jit may  position of the source and receiver.

take both positive and negative values.

The shear value for the wave current phase @, at the transducers VC position
depends only on the phase difference 8. Similarly, when 6= 0, 180°, the angle @.o =
0. From formula (1.12) it follows that by the value of ., the phase difference ¢ can
be calculated.

1.3. Variation of the envelope of stationary shear waves

Let us examine in greater detail Eq. (1.8). With Ferma theorem we shall
determine the value of the circular frequency @,,, at which the amplitude A4z, takes
the maximum value:



g As A [cos® Bsin @t + sin® Bcossin et +sin® Bsin Scoswt]=0.
2

From the above:
2 .2 .2 . . _
cos” fcos@,,, +sin” fcoso cosw,,, —sin” fsindsinw,,, =0-
whence

1
sin &

o, =arctg (ctg’B+cosd)tnr. (1.13)

nm

Then if we substitute the value of ¢ in Eq. (1.9) for the obtained value of @, we
will get the equation of the summary wave envelope at the receiving transducer input
(position VP),

Aypy = A A, \/cos4 [ +2cos’ Bsin® Bcosd +sin’ . (1.14)
Similarly we shall analyze Eq. (1.10):

i’q;zc B éi)t;AsAR sin 2 B[sin ot —sin(wt +5)] =0

From the above equation

coso —1
sin o

o, =arctg

cm

tnx. (1.15)

If we substitute ot in Eq.(1.10) for the obtained value of @.,, we will receive the
equation of the harmonic waves envelope at the receiving transducer input (VC
position),

AVCM:ASAR Sll’l2ﬂ(5/2) (116)
Equations (1.11)-(1.16) determine important properties of the amplitudes 4yp and Ay¢
and their envelopes that are observed with parallel and crossed polarization vectors.
Equations (1.11) and (1.13) as well as (1.12) and (1.15) show that:

WOpm = Wno T 9005

Oem = We0 T 90°.

It means that the angles ot = @, and @t = @y, at which the amplitudes Ayp and 4yc
are equal to zero, are shifted with respect to the same amplitudes' maxima by 90°.
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1.4. Peculiarities of circle diagrams with parallel and crossed polarization vectors

In accordance with the physical meaning, Eq. (1.9) and (1.10) represent
instantaneous values of harmonic wave amplitudes at the point in time z. The
amplitudes Ayp and Ayc recording is possible, especially at great frequencies, only
with equipment of high resolution both in time and wave quantity terms. If a signal is
close to harmonic, it is more convenient to observe variations of the maximum
amplitudes (envelopes) in the course of the sample rotation (Fig. 1.1) with parallel
(Aypy) and crossed (Aycy) polarization vectors. The amplitudes Aypy and Apcwn
behavior is described by Eq. (1.14) and (1.16) accordingly.

By the equations the values of Aypy and Aycyr depend only on the value of the
sample f rotation angle and the phase difference o. In Figure 1.4 are shown the
configurations of the envelopes Aypy (solid line) and Aycys (dotted line) with the phase
difference 6= /4 observed within the phase difference 0 - 27 [Gorbatsevich, 1982].

(o]

Fig. 1.4. Variation of maximum amplitudes (envelopes) recorded by the receiver with parallel
(solid line) and crossed (dotted line) polarization vectors of the source and receiver of shear
waves versus the sample rotation angle g and the phase difference 6.

As Fig 1.4 shows, beyond the dependence versus the rotation angle f of an
isotropic sample (6 = 0) in the VP position of linear-polarized transducers of shear
waves, one and the same envelope amplitude equal to Aypy recorded. The
configurations of the envelopes 4ypyrand Aycy, obtained as anisotropic samples rotate,
greatly depend on the value of the phase difference o. For instance, in the VP position
the Aypy configuration gradually turns from the circle shape (6 =0, 27, 47...) to a
symmetric four-petal figure ((6 = 7, 37, 57...). Beyond the dependence versus the
value of &, the greatest amplitudes Aypys are observed when the direction of symmetry
elements [010] and [100] coincide with the orientation of polarization vectors of the
source and receiver. With these orientations the value of Aypy (without regard for
attenuation) is independent of the phase difference 6. The amplitudes Aypy minima
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will be recorded when the rotation angle = 45° + na/2. The value of Aypy = 0 with
the same rotation angles £ and the phase difference 6= (2n - 1)x.

The envelopes Aycy configuration (Fig. 1.4) when an anisotropic sample is
rotated between the transducers in the position VC is a symmetric four-petal figure
independently of the phase difference 0 > 6 > 2z This figure is described by the
function Aycy sin2 5. Depending on the value of 6 only the maximum amplitude Aycy,
that is observed at the rotation angles S, = 45° + na/2, changes. The maximal Aycy (B
= f,) will be registered by 6= x, 37, 57 ....When 6= 0 the achievable value of Aycy
is equal to 4ypy. By the value of 4y according to Eq. (1.16) one may calculate the
phase difference o,

A
8 = arcsin————+2 1.17
arcsin AA, sin2f nr, (1.17)

wheren=20,1,2,3....

Independently of the value of o minima Ay are observed when the orientation
of symmetry elements [010] and [100] coincides with the orientation of the
polarization vector of the source or receiver. Thus, strait lines drawn through the
configuration Aycy minima will always point to the spatial location of the axes or
planes (their projections) of the symmetry of an anisotropic medium, of which the
sample is made. On the basis of Fig 1.4 and Eq. (1.14) and (1.16) the following
conclusions can be drawn:

1. The envelopes Aypy and Apcy configuration called acoustopolarigrams
[Gorbatsevich, 1982] are repeated with a step of the phase difference 6 = 27 The
acoustopolarigrams with 6 = (n+k)r are similar to those observed with ¢ = (n-k)x,
where n =0, 1, 2, 3... and the quantity £ may take any fractional values.

2. With the phase difference 6 = 2z the acoustopolarigrams reflect the equalities
Aypy = AsAr and Apcyr = 0 independently of the rotation angle £. With phase
difference 0 = (2n+1)x the acoustopolarigrams Aypy and Aycys are the same but
shifted with respect to each other by 45°. Opposite the maximum Aypy, is always
the minimum Aypcy. The minima and maxima of the acoustopolarigrams are
separated by 90°.

3. When the values of the phase difference ¢ are small, relative Aycys variations are
considerably more distinct than those of Aypy. Polarization measurements of
amplitudes made in VC position allow one to determine the spatial orientation of
symmetry axes and planes of an anisotropic sample much more precisely (over the
measurements in VP position).

4. The greatest (lowest) velocities of quasi-shear waves propagation should be
determined in the directions of the strait lines drawn through the symmetry centre
of the VC acoustopolarigram and the value of Aycy minima. The mentioned
directions reflect a spatial orientation of the symmetry axes (planes) of an
anisotropic medium. The dispersion of elastic waves propagation velocity is
relatively low. Therefore, experimental observations of the acoustoplarigrams
Aypy and Aypcys can be taken over a wide range of frequencies, as well as with the
use of acoustic impulses.

5. Due to the revealed shift of the current phase ¢ (see Fig. 1.3), one should not
measure the velocities of quasi-shear waves propagation in anisotropic media by
observation of the wave phase or by the phase correlation method. The
measurements by such methods are possible only in the cases when the orientation

12



of the wave shift vector coincides with the orientation of an elastic symmetry
element (axis or plane) of an anisotropic medium.

1.5. Circle diagrams at time separation of shear pulses

The processes of harmonic stationary wave propagation in an anisotropic medium

have been considered above. But in the course of practical measurements pulses with
harmonic filling are used most often.
This filling is formed through @
piezoelectric transducer (piezoelectric
ceramic element) waves at natural
frequency of a mechanical resonance
[Skuchik, 1976; Tyulin, 1976;
Glozman, 1972]. The pulse duration
and the rate of the pulse rise depend
on the form of the actuating electric
signal and even more on the degree of
the piezoelectric ceramic element
damping [Ermolov, 1981].

The above Eq. (1.8-1.16) as well
as a qualitative assessment by the
envelopes (Fig. 1.4) can be also
applied when in the course of
measurements the pulses with
harmonic filling are used. But in this
case the pulses propagating for
instance, along the directions [100] and [010] for the length of x (Fig. 1.1), should not
separate spatially. Now let us consider the case when for the length of x the pulses
separate spatially into §” = S; and §'= S5, Fig. 1.5.
Such a separation is observed when

[toc]

Fig. 1.5. Diagram of a quasi-shear wave
propagation through an anisotropic sample
with the spatially separated pulses S; and S,

Ti> (V1) — (V%) (1.18)

where T; is the pulse duration.

As follows from the last mentioned expression, the
separation into S; and S, can be realized with a
sufficiently "short" pulse (7; is small), a rather long
propagation distance x and a large difference in the
values of shear waves velocities along the medium
symmetry elements [100] and [010]. If the source A
polarization vector and the direction of the receiver B
greatest sensitivity are parallel, Fig. 1.5a, then, by Eq.  Fig. 16. Change of maxi-
(1.8), the amplitude of the pulse S) that was the first to  mum amplitudes (envelopes)

cover the distance x, will be equal to at the source and receiver
parallel (solid line) and
crossed (dotted line) polari-

. 2mx .
Ay, = Ag A, cos fsin(@wt ———+@,) (1.19) zation vectors, observed at
A, the separated pulses S; and

S,'.

and the amplitude of the impulse S, will be

13



2
Ay, = A A, sin fsin(et — f’“ L) (1.20)

Accordingly, without regard for the attenuation the amplitude Ayp; = 4 =A(;10 when

the vector A4 orientation coincides with the plane [010]. The amplitude Ayp,= A4 = A{OO

when the vector 4 orientation coincides with the axis [100]. It is also true that 4y =0
when 4 is directed along the axis [100] and 4yp; = 0 when A is directed along the
plane [010]. Thus, at the VP position of the source and receiver and separated pulses
the location of the medium symmetry elements may be determined rather exactly by
the moments of the pulses attenuation. For instance, the location of the moment [100]
is determined by the moment of the pulse S; extinction and that of the element [010] —
by the moment of the pulse S, extinction.

The values of Ayp1 = Aypr = \/E/ZASAR when = 45° + nz/2, where n = 0, 1,
2,.... The shape of the envelope circle diagram (Fig. 1.6), observed at the separated
pulses ;" and S>', will not change with increasing sample length or frequency fo. Such
a change is possible only when other effects manifest themselves.

Now let us consider the case when the orientations of 4 and B are crossed. As the
diagram (Fig. 1.5b) suggests, the reception of the waves takes place in the direction B
that makes a right angle with the direction of the attenuation 4. If the vector 4 makes
an angle f with the direction [010], its projection will make 4y;9 = Acosf and in the
direction 499 = Asinf. Reflecting the projections 4gio and 409 to the direction B we
obtain that

Aporo= Acosfcos(90° - f) = Acossinf,  Apioo = Asinffcosf3
The total amplitude B will be equal to
B = Acosfsinff + Asinficosf =Asin2 . (1.21)

The expression (1.21), as a whole, coincides with the more general Eq. (1.10). As
the waves propagate, after the time 7; has passed, a complete separation of pulses,
generated by the components Ao and A4;¢o, will take place. The faster pulse 4o will
be in the cross-section [100]"-[010]", while as a slower one A4;¢p — in the cross-section
[100]-[010]". Accordingly, each of them will create in the receiving transducer,
oriented in the direction B, the following signal amplitudes:

1 2
Ayey =5 AsAy sin2Bsin(et - T’D‘ +0,), (1.22)
1 2
Ayes =5 Ag Ay sin2Bsin(or - %‘x L) (1.23)

As follows from the last-mentioned expressions, Ayc; = Aycz = 0 when =0+ n/2,
wheren=0,1, 2,....

So, at the VC position of the source and receiver and separated pulses, the spatial
location of the medium elements is at the moments of the pulses S; and S,
simultaneous attenuation. The shape of the circle diagram VC, Fig. 1.6, will not
change with increasing sample length or frequency fy. But in the presence of linear

14



acoustic anisotropic absorption [Gorbatsevich, 1982] with increasing x qualitative
changes of the circle diagrams may occur, Fig. 1.6.

As a whole, even with the separated pulses observations of the circle diagrams
enable to determine the spatial location of the elastic symmetry elements of the
medium under study with a high precision. In this case such a determination can be
fulfilled both with crossed and parallel polarization vectors of the source and receiver
of shear waves.
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2. EFFECT OF LINEAR ACOUSTIC ANISOTROPIC ABSORPTION (LAAA)
2.1. Models of media exhibiting LAAA

Pleochroism or the phenomenon of linear anisotropic absorption is observed as
the light passes through transparent media [Shurkliff, 1962]. It reflects an ability to
absorb a beam of the polarized light in various ways when rotating its polarization
vector with respect to the medium structural elements. In this case, as a rule, the
greatest absorption of the polarized light is observed when the polarization vector is
directed along the perpendicular to linearly stretched structural elements of the
medium. The direction of the light greatest pass coincides with the orientation of
linear elements. Because of this, the observed phenomenon got the second name —
linear anisotropic absorption. Some natural minerals — tourmaline, kunzite, cordierite
exhibit the effect of optical dichroism [Smith, 1972]. On the basis of polyvinyl and
other compounds high-efficiency polarizers of ordinary light, using the effect of
pleochroism, have been developed [Zhevandrov, 1978].

The effect of linear acoustic anisotropic absorption of elastic waves (LAAA) has
been studied and used to a much lesser degree. Let us consider, for instance, a device
that can serve as a passive analyzer to determine the orientation of the polarization
vector of shear transverse waves emitted by ultrasonic transducers [Proctor, 1971].
The device represents a pack of glass plates glued together for example, by wax or
epoxy resin. But the contact between them may be left dry. Working planes parallel to
each other are ground to the normal of the faces of the pack of glass plates. Through
these faces bundles of shear waves are sent into the device.

On testing of a similar passive analyzer it was revealed that if the polarization
vector (the direction of the medium particles shift in a wave of shear vibrations)
coincides with the orientation of the glass plates, then the wave amplitude is
transmitted through the analyzer virtually without loss. If we turn the polarization
vector perpendicularly to the glass plates surfaces, nearly complete attenuation of the
shear waves in analyzer will happen. According to T.M. Proctor [1971], the amplitude
variation of the shear waves propagating through the analyzer versus the polarization
vector rotation angle relative to the plates orientation is close to the cosine function.
The deviations from the regularity 4 = Ascosj may be explained by inaccurate count
of angles and amplitudes. The analyzer quality depends on the length of the wave
propagation in it and on the wavelength to plates thickness ratio.

Such a passive analyzer may be considered to be a model of the medium in which
the effect of linear acoustic anisotropic absorption (LAAA) of shear waves is realized.
Among natural formations there are texturized, layered media and media with a linear
texture, in which a regular alternation of one elements, stretched in a certain direction,
with others is observed. Such a texture is inherent to many crystalline rocks. So the
manifestation of LAAA should be expected in rocks. The degree of its display will
depend on the level of the texture "organization" of a rock sample, heterogeneity
presence, acoustic contrast and its structural elements [Gorbatsevich, 1990].

The effect of linear anisotropic absorption will, probably, be displayed in
combination with the effect of elastic anisotropy. A joint analysis of these effects for
low symmetry media is very complicated. Therefore below, using some particular
cases as examples, we shall consider the LAAA display in isotropic media and its
manifestation in combination with the effect of elastic anisotropy during the
propagation of shear waves in the simplest transverse-isotropic medium. The results
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of a theoretical analysis given below do not claim to be full and complete, since only
phenomenological consequences of the phenomenon have been considered.

For LAAA observation of most interest is the analysis of circle diagrams obtained
when the polarization vectors are parallel (VP position). But when the LAAA and
elastic anisotropy effects are acting jointly, one should observe the changes in the
circle diagrams obtained with the crossed polarization vectors of the source and
receiver (VC position).

2.2. Isotropic medium

Let us imagine that the medium, of which the sample analyzed has been made, is
isotropic and exhibits the LAAA effect ideally. Such a sample acts as a linear
polarizer and fully absorbs shear waves when their polarization vector is orthogonal to
the greatest transmission direction (GT). On the basis of LAAA cosine function
[Proctor, 1971], for the received waves amplitude 4yp, measured at the parallel
polarization vectors of the transducers (VP 0 43 7/
position), we obtain

Ayp =AgApAge cosjsin(a)t—zTﬂer(po), (2.1)

where Ay is the amplitude of waves radiated by the
source; Ar is the value of the receiver greatest
sensitivity; Agg 1s the factor of analyzer
transmission in the GT direction; j is the angle
between the direction of polarization vectors and
the GT direction.; @ is the waves circle frequency;
¢t is time; A is the wavelength; x is the sample
length; ¢y is the initial phase shift. The circle  Fig- 2.1. Circle diagrams of the
diagram of the Ayp value within the angle j = 27 is amplitude variation of ~shear
. R waves that have passed an
given in Fig. 2.1. isotropic medium with different
The medium, of which the sample has been  degrees of LAAA  effect
made, may not manifest itself as an ideal linear =~ manifestation. 1 - D =1.0;2-D
polarizer. In this case in the direction =0-93-D=0254-D=0.
perpendicular to GT the receiver should register
some amplitude Agz depending on the degree of LAAA manifestation. Taking the
transmission factor in the direction perpendicular to GT to be equal to Agg, we obtain
that in the direction of "the greatest transmission" the factor Agxg = Ary + Arg, Where
Agy is an additional to Agg transmission factor in the GT direction. Equation (2.1) for
the case of non-ideal LAAA manifestation will be

. 2
Ayp =AgAg (Agy €O j+ App )s1n(a)t—7ﬂx+goo). (2.2)

The degree of LAAA manifestation in a sample can be expressed by the following
index [Acoustic polarization..., 1985]
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_ ARE _ARR , (2.3)
ARE + ARR
where the value of Agg is determined when j = 0 and Azz — when j = 90°.

According to (2.3), the sample with a full effect of LAAA has a degree of D =1,
with the absence of LAAA D = 0. Figure 2.1 shows the circle diagrams of the
amplitude Ayp variation (VP position) for media with different degrees of LAAA. If
the polarization vectors of the transducers are crossed (VC position), then for an
isotropic medium the amplitude 4yc= 0 with any degree D.

2.3. Transverse-isotropic medium

The amplitudes of the shear waves that have passed through the sample in the
direction of the isotropy plane (VP position), are described by Eq. (1.9) and (1.10).
When the effects of LAAA and elastic anisotropy act jointly, with the multiplier of
the expression (2.2), Eq. (1.9) and (1.10) become:

Ayp = Ag Ay (Apy 08 j+ Apy, )cos” ﬁsin(wt—27m+¢o)+sin2 ﬂsin(a)t—zjx +¢,)], (24)

1 2

Ay :%ASAR (Apy cOS j+ Ay )sin2,6’[sin(a)t—2fc +(00)—sin(a)t—2ﬂx

1 2

+¢,)](2.5)

Equations (2.4) and (2.5) describe variation of harmonic amplitudes of shear
waves that have passed the sample made of the medium exhibiting transverse-
isotropic symmetry of elastic properties and LAAA effect when, in the former case,
the polarization vectors are parallel and, in the latter one, when they are crossed at
90°. In the presence of the effect the envelope amplitude registered by the receiver in
the VP position, Eq. (1.14), with the multiplier (2.2) will be equal to:

Ay = Ag Ay (Ayy, cos j+ Ay Weos* B+2cos® Bsin® Bcosd +sin' B. (2.6)

In the VC position the envelope amplitude Aycy, Eq. (1.16), will be
supplemented by the multiplier,

o
Ayery =AgAr (Agy cosj+ARR)sin2ﬂsinE. 2.7)

For practical analysis of the peculiarities of the joint display of LAAA and elastic
anisotropy effects we shall follow the variation of amplitudes Ayp and Ayc (their
envelopes) within the circle diagrams (£ =0 + 27) for some particular cases, that are
characterized by certain phase ratios of waves, propagating along the axis and
symmetry plane of the medium, and by the degree D.

1. The size of an anisotropic sample, expressed in the wavelengths, is equal to:

__Ah
A=)

X
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With such a value of x the phase of the wave propagating with the polarization
vector, oriented along the plane of elastic symmetry, is ahead of the wave phase with
the vector oriented along the symmetry axis, by the angle 6 = /2. Taking the GT
direction to coincide with the medium symmetry plane (angle j = f), from (2.4), for
the signal amplitude, detected in the VP position, we obtain (D = 1)

A,y = A A, A,y cos Blcos’ Bsin(wt + w) +sin® flat + y)]. (2.8)
For the signal amplitude, detected in the VC position, from (2.5) we obtain (D = 1)

Ay = %ASARARE cos fsin2 f[sin(wt + ) —cos(wt +y)]. (2.9)

Similarly, from Eq. (2.6) and (2.7) the expressions for the envelopes Ayp and Ay¢
can be obtained. Figures 2.2.1-2.2.5 show the circle diagrams for variation of the
envelopes of the harmonic amplitudes 4yp and Ay (0= 90°) versus the rotation angle
with respect to the plane of the medium elastic symmetry.

Circle diagrams for the VP position are given in a solid line, those for the VC
position - in a dotted line. In Figure 2.2.1 the circle diagrams are given for the sample
that does not exhibit LAAA (D = 0) [Acoustic polarization..., 1985], in Fig. 2.2.2 —
for D =0.25, in Fig. 2.2.3-2.2.5 — for D = 0.5 and D = 0.75, D = 1 accordingly.

2. The size of an anisotropic sample, expressed in the wavelengths is equal to

24 -4)

In this case 6 = 7. We shall maintain the condition j = J. Equation (2.4) with 6 =
and D = 1 will be

A,p = AgAp Ay, cos fcos2Bsin(wt + ). (2.10)

From (2.5) with 6 = 7, j =6, D=1 we shall obtain

Ay =AgAp Ay cos fsin2fsin(wt + ). (2.11)

The circle diagrams for the case 0 = 7, j = 6, D = 0 and also for o = 7z, j=0, D = 0.25,
D =0.5,D=0.75, D =1 are given in Figs 2.2.6-2.2.10. A joint examination of the
analysis results and Figs 2.1, 2.2 shows that for both isotropic and anisotropic media
the circle diagrams can serve to determine the direction of the greatest and the least
transmission as well as the degree of the LAAA manifestation. The LAAA effect is
most conspicuous in variation of the circle diagrams envelopes, calculated for the
transducers VP position. In the absence of the phase difference o along the selected
direction in the sample and with a full effect of LAAA the circle diagram in the VP
position should be close to the function 4yp = cosj. As the phase difference (from 6 =
0 to 0 = 7) increases the circle diagram of an anisotropic sample in the VP position
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becomes more stretched along the GT direction, additional minima appear on it. The
presence of LAAA leads only to some envelope distortion of the circle diagrams,
calculated for the VC position, to the area decrease and reduction in the petals size.
As the medium index D increases the VP circle diagram stretches along the GT
direction.

2.4. Observations of LAAA in model media

To check the above stated theoretical concepts we performed model experiments
trying to determine the impact of linear heterogeneity on the amplitude and values of
compression and shear waves velocities.
The measurements were made by the

. 6
acoustopolarization determination ¥
methods  [Gorbatsevich, 1986]. A
cylindrical sample made of _ 0

polymethylmethacrylate (organic glass)
was used as a model (Fig. 2.3.A).

Before every measurement cycle holes 2
mm in diameter parallel to each other and
perpendicular to bundle of ultrasonic
waves were formed. Measurements were
made with unfilled, hollow and filled with
thick mineral oil holes. To a certain
extent, in the first case the model
represented a porous medium with
strongly oriented fractures filled with gas
while in the second case it represented
also oriented but filled with mineral oil or,
otherwise, liquid hydrocarbons fractures.
Altogether 15 individual measurements
were made, first in a model without holes,
then successively in the model with 1, 2,
3, 4,5, 7 and 9 holes. For measurements
standard ultrasonic apparatus was used
[Acoustic polarization..., 1985] and
transducers of purely shear, linear-
polarized waves with natural frequency of
Jo = 0.47 MHz. The main measurement Fig. 2.2. Circle diagrams for variation of the
results are given in Table 2.1, the amplitude of shear waves propagation in

acoustopolarigram of the model without aPiiotropicﬁmedil11m6withDdiff8re;t degrges
hol - in  Fig. 23B d Of LAAA effect. 1,6 - D =0, 2, 7 - D =
0°es morE N 0.25,3,8-D=054,9-D=0.755, 10

acoustopola.rigra‘ms of the models with  “"5" 2" "For patterns 1-5 the phase
unfilled — in Fig. 2.3.1-2.3.3 and filled itference is equal to & = /2, for 6-10 & =
holes — in Fig. 2.3.4-2.3.6. 7. Solid lines are for VP, dotted lines - for
The table gives the value of VC.

conditional porosity n calculated as the

holes volume to the model volume ratio in relation to the holes quantity. The
compression wave velocities V), are presented in the table as well. The shear wave
velocities measured with the polarization vector oriented along the holes V; and
perpendicular to them (V) are given in the table too. The value of V;, was calculated
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with regard to the phase difference o, determined in the course of acoustopolarization
measurements [Gorbatsevich, 1995]. In the table the ratio of the amplitude of the
compression wave that has passed through a model with holes 4,;, to the amplitude
Apo measured in the sample without holes is given. Similarly, the ratio of the shear
wave amplitudes Ay;/As0 was obtained, A4, being measured when the polarization
vector of the transducers was in the plane passing through the holes axes.

Table 2.1.

Results of measuring elastic wave velocity and amplitude in models with different
numbers of holes".

Num- |Condi- Holes filled with gas Holes filled with oil

erof jtional -y “ly Sy 4w Jae [P0 e [V [ Ve [4n [4am [P

holes \porosity |,/ \km/s |jmss /Ay |/ fm/s | ks | km/s /4, | /Ag,

n, % ‘ ? .

0 0 [275 [138 [1380 |10 [0 |00 [275 [1.380[1.380(1.0 [1  |0.0
1 | 127 [275 [138 [1.380 [0.81 0.69 [0.0 [2.75 [1.380[1.375 [0.81 [0.69 [0.27
2 | 254 [275 [138 [1379 [045 [0.56 [0.030 [2.75 [1.380 [1.378 [0.45 [0.60| -
3 | 381 [275 138 [1.377 045 |045 [0.064 (275 |[1.380 [1.374 [0.45 |0.40 [0.31
4 | 472 [275 [138 [1.374 045 [035 [0.088 [2.75 [1.380 [1.365 [0.45 [0.35 [0.44
5 | 563 (273 138 [1374 038 (039 [0.091 [273 [1380| - 038 [0.380.53
7 | 745 [271 (138 [1369 025 [0.34 [0.106 [2.71 [1.380 [1.358 [025 [0.33 [0.65
9 | 927 [271 138 [1361 025 [024 | - [271 [1380| - 025 [o28]-

*) Measurements on the model have been made by PhD M.Z. Abdrakhimov and Eng. S.K. Belyaev.

Linear anisotropic absorption was measured by formula (2.3) that reflects various
absorption of shear waves at different orientation of the polarization vector relative to
the medium structure (in this case — the holes axes). Figure 2.4 shows the dependence
of the value D in the model with unfilled and filled with oil holes as well as the
amplitude ratio A4;,/As0 on the holes number in the model.

As the test results (Fig. 2.3) suggest, the acoustopolarigram, obtained at the
transducers' parallel polarization vectors, is a curve very close to a circle. This shows
that the model initial material is elastic-isotropic [Gorbatsevich, 1986].

The model with holes filled with air exhibits a slight increase in elastic anisotropy
as the number of holes or conditional porosity index n rises (Tab. 2.1, Fig. 2.4).
Judging by the acoustopolarigrams VC distinct anisotropy is observed with 5-7 holes
in the model. With such number of holes a slight decrease (0.8-1.5%) in the velocity
of compression ¥, and shear V, waves is observed with the polarization vector
oriented along the normal to the holes. As the number of holes increases in the path of
the ray bundle, the amplitude of both compression A4,/4,0 and shear A;,/As0 waves
substantially decreases.

For instance, with 9 holes both compression and shear waves attenuate nearly 4
times. Moreover, the degree of this attenuation does not depend on the fact whether
the holes are filled or not (Fig. 2.3.A). Quite another picture is observed when
analysing the variation of the shear wave amplitude with the polarization vector
oriented along the normal to the hole axis. It is best shown in Fig. 2.3.4-2.3.6. For
example, the acoustopolarigram obtained for the model with five filled holes, Fig.
2.3.5, is similar to the theoretical circle diagram, Fig. 2.2.3, with D = 0.5, 6= #/2.
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When the number of the oil-
filled holes in the model increases

2
the acoustopolarigram VP flattens ;
and the index D greatly increases I
(Fig. 2.4). Judging by the slope of =i=f-— K'ﬂ 0

the averaged straight lines the index “':_J;-:f'—‘:-
D in the case with filled holes is 6 el &
times higher than that in the model 2
with unfilled holes. The reason is

that as shear waves with the 90°

displacement vector oriented along 1 4 90°

the normal to the holes pass, most

of the vibrational power does not - 0 /‘; \o
reflect at the hole boundary, but {:.Jg
passes in the liquid and dissipates L/

there.

This conclusion is drawn from 2 90°
the fact that ultrasound velocity in 5 90°
mineral oil (V, = 1.44 km/s) is close o~
to the shear wave velocity in the /.\ 0 /_"‘_/:‘_\o
model material (Vy = 1.38 km/s) \‘ ‘/ {x'"}..:‘-’...
with a slight difference in the

density of oil (p = 0.87 g/sm’) and
polymethylmethacrylate (p = 1.18 3 90°
g/sm*). If the holes or pores are not
filled then elastic energy does not \
overcome the medium-gas Y 0
boundary and hence is not lost. In L

this case due to diffraction a shear

wave rounds the holes.

On the basis of the above
model experiments the fol]owing Fig. 2.3. Model and acoustopolarigrams of the
conclusion may be drawn. The model with oriented holes. _
effect of linear acoustic anisotropic A — model, B - acoustopolarigrams of the model

] . ) . p without holes. Acoustopolarigrams of the model
absorption arises in media when  ith holes: (1), (2) and (3) — 3, 5 and 7 holes
linear polarized shear waves respectively, a filler is air; (4), (5) and (6) — 3, 5
interact with heterogeneity oriented and 7 holes respectively, a filler is mineral oil.
along the line or planes. Those may VP, solid lines; VC, dotted lines.
be both filled, for instance, with
liquid and unfilled oriented fractures. The degree of LAAA greatly depends on the
fact whether the holes are filled with liquid or they are dry. Filling the fractures, for
instance, with liquid hydrocarbons may substantially rise the LAAA index D. The
observation of LAAA in natural media allows one to register some forms of this
phenomenon.

As a whole, the LAAA effect may be represented by two basic models. One of
them is the above Proctor's model [Proctor, 1971] or model I. In rocks this model may
be realized in the media that have oriented cracks or plane elements (minerals), such
as mica, talc et al. On a sample of the medium representing model I the LAAA effect
will be observed on the sides where the butt-ends of the plane elements are exposed,
Fig. 2.5a. In this case the "greatest transmission" directions and, accordingly, the

6 90° .
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largest diameters of the VP D ,
acoustopolarigrams on the neighbouring sides a 4
will be directed to each other and pinpoint the 5| //
arrangement of the plane elements. On the i }(/
side parallel to the plane elements VP X/ E
acoustoplarigrams that are close to isometric 04t / !
will be detected. The observation results (Fi - x’
: g X / 2
2.3) allow one to conclude that there is ol /
another, radically different from the first i // —
model - model II. It consists of linear /o=
. . . . .. -9 1 a1
elongated in one direction, isometric in the
cross section elements (Fig. 2.5b). Al I:—J
As follows from the Figure, on the sample Ao b J
representing the medium of model II the /0 Eé
LAAA effect will be most conspicuous on the _ 5
sides parallel to linear elements. Unlike model 451 @ "
I, the directions of "the greatest transmissions" @
and, accordingly, the largest diameters of the I s ® + 4
VP acoustopolarigrams will be directed to the 02 ®
side perpendicular to linear elements. On this TR N S EENRY SRR

side the VP acoustopolarigram close to 0 2 4 6 g n

isometric should be obtained. As follows from Fig. 2.4. (a) LAA index D measured on
Fig. 2.5a and 2.5b, the difference between the  the model with unfilled (1) and filled (2)
medium of model I and that of model Il may holes. (b) Ratio A,/A, (3), ratio

be established only on the basis of spatial AsmAso in the model with unfilled (4)
measurements system and filled (5) holes in relation to the
' holes number in the model.

2.5. LAAA observations on a model with an angular unconformity with elastic
symmetry elements

An arrangement of symmetry elements of elastic anisotropy and linear acoustic
anisotropic absorption in solid bodies may not coincide since those phenomena are of
different physical nature. With an angular unconformity between the symmetry
elements of LAAA and elastic anisotropy formulae (2.6) and (2.7) take the following
form:

Aypyy = Ag Ay (A cos(j + r)+ARR)\/cos4 S +cos’ Bsin® fcosd +sint B, (2.12)
. . .0
Ayery =AsAz(Agpy cos(j+7)+Ape )s1n2ﬂsm5, (2.13)

where 7 is an angle between an elastic symmetry element of the media and a
symmetry element of the LAAA spatial figure of the solid body.
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By formulae (2.12) and (2.13) we have calculated circle diagrams of Aypy and
Aycy amplitudes with two values of the phase difference 0 = 7/2, 6 = 7 and different
unconformity angles z. The calculation results are given in Fig. 2.6.

Fig. 2.5. Plane (a) and linear (b) models of LAA display. VP, solid lines; VS, dotted lines.

As follows from the diagrams, with the angular unconformity 0<7<45° Aypy
diagrams become asymmetric both with 6 = 772 and 6 = . These diagrams become
symmetric with 7= 0, 45°+ n/4, where n =0, 1, 2, 3.... Such a peculiarity of the VP
diagrams may serve as a diagnostic sign for the presence of the angular unconformity
between the elastic symmetry element of the media and the symmetry element of the
LAAA spatial figure of the solid body. With this unconformity the variations in the
Aycy diagrams obtained at crossed polarization vectors are all the more conspicuous.
The petals of these diagrams become unequal in size and area and with 7=45° a four-
petal figure becomes two-petal. With the phase difference 6 = rand 65° > 7> 25° an
intriguing phenomenon is observed - in a certain angle range the amplitude with the
crossed polarization vectors becomes larger than that with the parallel ones (Aycy >
Aypu). These signs are determining at the angular unconformity diagnosis.

Besides the calculations, we have taken model measurements of the mutual
influence the mentioned effects exert on the acoustopolarigram shape [Gorbatsevich
& Il'chenko, 1997]. The model prepared for measurements was made of two plates
(Fig. 2.7). One of the plates was made of piezoelectric ceramics of PZT type. The
material of this plate is an anisotropic medium of transverse-isotropic symmetry type.
The plate was sawn in such a way that its surfaces were parallel to the elastic
symmetry axis of the ceramics. It was 4.25 mm thick. The second plate was made of
wood with regular foliation, since it has a strong LAAA effect [Gorbatsevich, 1999].
The wooden plate of 2.25 mm thickness was sawn in such a way that the direction of
its fibres coincides with the symmetry axis along elongation. Acoustopolarigrams for
the ceramic and wooden plates are presented in Fig. 2.7. The measurements were
taken at the basic frequency fy = 1.12 MHz. The phase shift along the axis and the
symmetry plane in the ceramic plate is 88° and in the wooden plate - 56°.

Before the measurements on the model the position of the plates relative to each
other was rigidly fixed with a special clamp. Then the fastened plates were placed on
the rotating platform of the acoustopolariscope [Gorbatsevich, 1995]. The acoustic
contact between the plates was performed with a high-viscous solution of non-
crystallized polysaccharides [Acoustic polarization....1985]. In the sequence of
measurements the pulse amplitude of the passing waves in the rotation angle range of
0-360° with a step of 10° was fixed. The amplitude measurements were conducted
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both at crossed (VC) and parallel (VP) polarization vectors. In a sequence of
measurements the mutual orientation of the model plates was successively changed.
At first the angle between the plates was 0°. Then the angle between the plate axes
was changed to 15°.After that the mutual angle was increased by further 15°. Thus, a
set of acoustopolarization measurements was performed with the angles between the
model symmetry elements of 0, 15, 30, 45, 60, 75 and 90°.

By the VP acoustopolarigram we
determined the degree of LAAA manifestation
D and by the VP and VC acoustopolarigrams -
angles «;, o and 3. The angle o was
determined between the reference axis 0° and a
strait line passing through the model rotation
axis and opposing amplitude maxima of the VP
acoustopolarigram (petal tops of a larger pair).
The angles o, and a3 were determined between
the reference axis 0° and strait lines passing
through the opposite minima of the VC
acoustopolarigram. At every measurement
stage the change in the size and shape of the
acoustopolarigram petals was detected. The
measurement results are given in Fig. 2.7 and
Table 2.2.

Fig. 2.6. Circle diagrams of Aypy

When the angle 7 between the elastic
symmetry elements is 0°, Fig. 2.7.a, the
summary  acoustopolarigram  presents a
combination of acoustopolarigrams, Fig. 2.7.2
and 2.7.3, and the model presents a transverse-
isotropic medium with a high LAAA
manifestation. An estimation of its degree by
formula (2.3) gives D = 0.53, angles a1 = 0°,
=0° a3=90° Table 2.2.

amplitudes for two values of the
phase difference 6= 72 (1-4), 6=«
(5-8) and different discordance
angles 7= 0° (1, 5), 15° (2, 6), 30° (3,
7), 45° (4, 8). The angle count is
performed from the elastic symmetry
element of the media, the LAAA
symmetry element is displaced by an
angle z. VP - solid lines; VC - dotted
lines.

When the plates rotate relative each other
through 7 = 15° the LAAA degree increases to D = 0.58 (Fig. 2.7b). The VC
acoustopolarigrams petals become asymmetric. For instance, the petals located in
quarters I-I1I of the circle became twice larger and wider and those from quarters II-
IV became slightly longer, by some 10%. Judging by the angle «; the VP
acoustopolarigram has rotated relative to the reference axis by about 10°. The angles
marking the position of the elastic symmetry elements are o, = 0°, a3 = 114°.

When rotated through 7= 30° the LAAA index changed to the value of D = 0.37
(Fig. 2.7¢). The rotation angles of the acoustopolarigrams symmetry elements were a;
=15° a»=0°, oz = 130°. When rotated through 7= 45° the LAAA degree increased to
D = 0.52 (Fig. 2.7d). The VP and VC acoustopolarigrams took near-two-petal shape.
In this case it was possible to measure only two angles - ;= 0° and & = 0™ A great
increase in the amplitude of the waves detected at the VC position is observed. This
amplitude markedly exceeds the amplitude of the waves detected in the VP position.

The observations performed at 7> 45° show that the resultant acoustopolarigrams
are mirror images of the previous ones. The discrepancy between the
acoustopolarigrams obtained at 7= 15° and 7= 75°, r=30° and 7= 60°, are likely to
be caused by inaccurate setting of the angle between the model plates and unstable
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contact conditions. If the values of D, ¢,
o and o are  similar, the
acoustopolarigrams at 7 = 90°, on the
whole, are close to the acoustopolarigrams
outlines at 7= 0°. |

Analysing the data from Fig. 2.7 and 3 a l
Table 2.2 it should be noted that increasing e
the angle between the model plates, a
slight rotation of the acoustopolarigram
symmetry axis (its largest diameter) at the b
VP position occurs. From 7= 0 to 7= 45°
this rotation takes place in the same
direction as the rotation of one of the
model plates. But at 7 > 45° this rotation
occurs in the opposite direction.

When the angle 7 is changed the
LAAA degree does not vary greatly.
Judging by the constant value of the angle f |
a, = 0°, the elastic symmetry element
singled out on the VC acoustopolarigrams - .
and corresponding to the symmetry
element of the wooden plate remains
unchanged. It can be easily explained by
the fact that in a sequence of
measurements the ceramic plate changed
its position, while the wooden plate
remained in place regarding the
acoustopolariscopy reference scale.

Fig. 2.7. Sketch model and acousto-
polarigrams obtained at different angles
between the symmetry elements of the
ceramic and wooden plates.

1 - sketch model, - the upper plate is
ceramic, the lower — wooden. 2 -
acoustopolarigrams for the ceramic plate.

The elastic symmetry second element
corresponding to the symmetry element of
the ceramic plate is adequately reflected
on the VC acoustopolarigrams only at low
rotation angles 7. At 7~ 20° and higher the
real position of the symmetry elements of
the ceramic plate cannot be determined by
the VC diagrams minima. This aspect

3 - acoustopolarigrams for the wooden
plate. Acoustopolarigrams for the model
with angles 7 between the symmetry
elements of the plates, accordingly: a —
0°% b—15°% c—30°% d —45° e —60° f -
75°, g — 90°. The angle count is
performed from the LAAA symmetry
element of the wooden plate, the elastic
symmetry element is displaced by the

should be taken into consideration in the angle 7. VP - solid line; VC - dotted line.

presence of an angular unconformity
between the symmetry elements of LAAA and elastic anisotropy.

Thus, both theoretical calculations and model tests revealed that the most
characteristic sign for the presence of an angular discrepancy between the symmetry
elements of LAAA and elastic anisotropy is inequality of the petals size and area in
the VC acoustopolarigram. In this case the Ilargest diameter of the VC
acoustopolarigram may be greater than that of the VP acoustopolarigram.

A theoretical analysis and observations on the joint display of elastic anisotropy
and the LAA effect on model media allow one to draw the following conclusions:

1. The acoustopolarigrams for the samples of the media exhibiting the linear acoustic
anisotropic absorption (LAAA) effect enable determining the direction of the
greatest and least "transmission" of shear waves and the LAAA manifestation
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degree.
Table 2.2.
Angles measured on the acoustopolarigrams of the model made
of ceramic and wooden plates**).

Angles between the

symmetry elements of

the model plates 7, 0 15 30 45 60 75 90
grad

Rotation o, 0 10 15 0 160 165 0
angles of the | graqg

acoustopolari-

grams o, 90 114 | 130 0 65 78 90
symmetry grad

elements

LAAA degree 0.53 |0.58 |037 052 [049 |0.53 049
D

Notes: angle o, = 0 for all the values of angles ¢; and ;.
“)The measurements have been made by PhD V.L. Iichenko

The influence of the LAAA effect is most conspicuous in the change of the shape
of the acoustopolarigrams obtained in the VP position of the source and receiver.
As the phase difference increases in the range of 0-7 the VP acoustopolarigram of
anisotropic type becomes more elongated, additional minima appear on it.

The LAAA effect brings only a slight distortion of the shape of the
acoustopolarigrams obtained in the VC position.

Two main types of the LAAA display have been identified - plane and linear.
With plane type of LAAA the acoustopolarigrams largest diameters are oriented
to the opposite sides of the cubic sample. With the linear type of LAAA the
acoustopolarigrams largest diameters are oriented to the same side.

The spatial orientations of elastic symmetry elements and structural elements that
cause the LAAA effect do not always coincide. When they coincide the shape and
size of petals of the acoustopolarigrams obtained at crossed polarization vectors
are identical.

The most characteristic feature of the angular divergence between the symmetry
elements of LAAA and elastic anisotropy is inequality of the petals size and area
of the VC acoustopolarigram. The largest diameter (maximum amplitude) of the
VC acoustopolarigram may be larger than that of the VP acoustopolarigram.
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3. DEPOLARIZATION OF SHEAR WAVES IN ANISOTROPIC
HETEROGENEOUS MEDIA

As indicated above, the effect of linear acoustic anisotropic absorption (LAAA)
manifests itself in the media containing plane or linear elements. Another effect
observed in propagating seismic waves through geological media is associated with a
change in the degree of polarization of shear oscillation trains. Such a change is
accompanied by a buildup in the ellipticity of shear oscillations or by their
depolarization. Following Aleksandrov [1997], the polarization phenomenon is
accounted for by the scattering of shear waves from small- and large-scale
inhomogeneities. His conclusions were corroborated by Crampin's experiments on
inhomogeneous cracked media [Crampin, 1985]. A different interpretation of the
polarization phenomenon was proposed by Obolentseva [1992]. According to her
theory, depolarization occurs in some solids due to their gyrotropic or acoustical
activity. When a shear wave propagates in such media, its polarization vector rotates
through an angle proportional to the distance travelled.

To our opinion, the polarization effect is also appreciably manifested as shear
waves propagate in a medium consisting, for example, of differently oriented elastic
anisotropic layers. This paper describes some theoretical aspects of the shear wave
depolarization (SWD) effect, modeling results, and determinations of the effect in
crystalline rock samples. The obtained results show that the SWD effect is rather
frequently observed in anisotropic crystalline rocks composed of grains whose elastic
symmetry is sufficiently maintained, for example, in two directions.

3.1. Theoretical aspects of SWD

We consider the problem on the propagation and detection of shear waves in a
transversely isotropic medium composed of two parts (I and IT), whose lengths in the
wave direction are xj and x, respectively (Fig. 3.1). In part I, the medium symmetry
axis is oriented in the direction [100], and the symmetry plane in the direction [010]-
[010"]. In part I, the symmetry axis runs along the direction [100"] and the symmetry
plane passes through the direction [010"]-[010™]. The symmetry axis and plane of
part II form an angle a to the symmetry axis and plane of part I. These parts make
contact with each other (maintaining the acoustical contact) along planes [100']-[010"]
and [100']-[010"]. A linearly polarized harmonic shear oscillation 45 = Asin(a@t + ¢v) is
applied in plane [100]-[010] of part I, in the direction OK, at an angle £ to direction
[010]. The vector As has the component B = Asinf sin( @t + ¢p) in direction [100] and
the component C = Acosf sin(@t + ¢) in direction [010]. Once the shear oscillations
in part [ have run distance x; the component B in direction [100'] becomes equal to
[Gorbatsevich, 1982]

B = Asin sin(at — 27,/ A, + 9,), (3.1)
and in direction [010']

C' = Acos Bsin(wt —2mx, /| A, + ), (3.2)
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where A;1, A2 are the wavelengths with the polarization vectors oriented along the
symmetry axis and symmetry plane, respectively.

[100] [1007] fioo'] fi00"]

Fig. 3.1. Sketch of detecting the amplitude of a shear wave passing through parts / and /I of
the sample. The elastic symmetry elements form an angle « to each other.

In the acoustical contact of parts I and II, vectors B and C produce the
displacements along direction [100"]

B"=A4-(Z,, cosasin fBsinr, —Z, sinacos fBsinr, ), (3.3)

and along direction [010"]

C"=A-(Zy sinasin Bsinr, + Z,. cosacos fsinr, ), (3.4)

where Zpg, Zcp, Zpc and Zcc are the coefficients of shear wave passage, depending
on the ratio between the velocities of waves in the contact along directions B’, C’, B’
and C” and on the densities of the parts of medium p; and p;
ru=ot=2m, /A, +@,, rp=0t=2nx11,+¢@,.

When the oscillations have propagated over distance x; in part II, components B"”
and C" take new values. The component of displacement along axis [100"'] is

B'"'=A-[Z,, cosasinBsin(wt —2mx, /| A, =21,/ A, +@,) —

. (35
—Zpyc sinacos fsin(or —2mx, [ Ay, =276, | Ay + )] e
and along axis [010"']

C'"'=A-[Z, sinasin Bsin(wt —2mx, | Ay, —2mc, | A, +@,) + (3.6)

+Z.-cosacosfsin(wt —=2mx, | A, =2mx, [ A, +@,)]

where 4y, A2, are the lengths of the waves whose polarization vectors are oriented in
the direction of the symmetry axis [100"]-[100"'] and symmetry plane [010"]-[010™],
respectively.
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Assume that the receiver of oscillations is in contact with plane [100"]-[010"]
and possesses the highest sensitivity 4, in the direction parallel to line OK, i.e., to the
displacement vector of the medium in the source plane — the position when the
vectors are parallel (VP).

In this case, considering equations (3.1)-(3.6), the amplitude produced in the
receiver is

A,, = AA [sin(f — a)(Z,,; cosasin Bsiny,,, — Z -, sina cos Bsinr,,,, ) + 37)
+cos(f— a)(Z,. sinasin Bsinr,,, + Z . cosa cos fsinr,,,, )] o

For the case when the maximum sensitivity of the receiver is in the direction n-m
coinciding with the normal to line OK — the position when the vectors are crossed
(VC) we have

A, = AA [cos(f—a)(Zy, cosasin fsint,,, — Z, SIna cos fBsing,,, ) — (3.9)
—sin(f— a)(Z,- sinasin Bsing ,, + Z . COSa €OS fsint,,,, )] ’ '

where
Py =0t =21, | A, =20, [ Ayy + Qs Figpn=0t =27, | A\, =2710%, | A, + .

Both amplitudes Ayp and Ayc depend on the ratios between the wavelengths A,
A2, A21, A2 in each part of the medium, as well as on the distances x; and x, the
densities p; and p», the indicatrix of wave velocity, the oscillation frequency, and the
angles o and f.

In view of a large number of variables, formulas (3.7) and (3.8) are fairly
complicated for a direct analysis. Therefore, we consider the case when a composite
sample (Fig. 3.1) consists of two equal-length parts made of the same material. The
arrangement of their symmetry elements is shown in Fig. 3.1. Thus, for the composite
sample, we have X1 = X2 = X, 2,11 = 2,21 = i],’ 2,12 = 2,22 = ﬂz,’ and P = P, =P
Assuming that the anisotropy of shear waves is weak and setting p; = p,, the
transmission coefficients are approximately equal to one, Z s X Leg 2 Ly 2 Lo =1

Then, for the amplitudes 4yp and 4y we obtain the expressions

A, = AA, [sin(f— a)(cosasin fsinr,,, —sina cos Bsinr,,,, ) +
S . . (39
+cos(f—a)(sinasin fsinr,,, +cosacos Bsinr,,,, )]
Ay = AA, [cos(B— a)(cosasin fsinr,,, —sina cos Bsinr,,,, ) — (3.10)
, .

—sin(f— a)(sinasin fsinr,,, + cosa cos fsinr,,,, )]

where 7, =0t —4mx |, +@,, Typ,=0t—4mx /1, +¢,.

Formulas (3.9) and (3.10) help to explain the features of shear waves propagating
in a medium that consists, for example, of layers with the same thickness and
properties, in which, however, the elastic symmetry elements are oriented in an
arbitrary way. The specific case of such analysis, described below, uses the measured
amplitude of shear waves in a model composed of two identical anisotropic plates.
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3.2. Modeling of shear wave propagation in anisotropic plates

The acoustical polarization method was used to measure the amplitude of shear
waves passing through two anisotropic plates [Acoustic polarization..., 1985]. The
model prepared for measuring consisted of two anisotropic plates of uniform
thickness, composed of the same elastically anisotropic ceramic material (PZT-19).
The elastic symmetry plane is perpendicular to the plane of the plates with a thickness
of 4.2 mm. The longitudinal wave velocity is V, = 3.51 km/s, and the shear wave
velocities are Vi = 1.72 km/s
and Vy, == 1.89 km/s for the

polarization vectors
perpendicular and parallel to
the symmetry plane,
respectively. The

measurement frequency is fo =
1.12 MHz and the
wavelengths are 4, == 1.54
mm and A, = 1.69 mm. The
difference in phase between
the shear oscillations
propagating normally and
parallel to the symmetry
plane, over a distance equal to
the thickness of one plate, is &
= 88.4°.

In the course of
measuring, the plates were
superimposed on one another

and placed O.n the platfqrm of Fig. 3.2. (A) Arrangement of the plates on the
the acoustical ~polariscope  ,coystical polariscope platform and (B) acoustical
[Patent No. 1281993], polarization diagrams obtained for different angles «
between the source and between the elastic symmetry elements of the plates.
receiver of linearly polarized, Solid and dashed lines are for the parallel and crossed

purely shear ultrasonic polarization vectors, respectively.

oscillations, in a way that the

cylindrical beam of rays passed through both of them. The relative position of the
symmetry elements of the plates was fixed by a clamp (Fig. 3.2A). The first
measurement of Ayp and Ays was made for an angle of a = 0° between the plate
symmetry elements. The obtained VP and VC polarization diagrams are shown in Fig.
3.2B (a=0).

Then, similar diagrams were obtained for o = 15°, 30°, 45°, 60°, 75°, and 90°
(Fig. 3.2B). The VP diagrams show a gradual change-over from a four-petal pattern to
a figure more and more resembling a circle, as the angle « increases. The diagram for
a = 90° almost coincides with that of an isotropic medium (Fig. 1.4). While
increasing « the VC diagrams exhibit a pronounced feature. Specifically, the
minimum amplitudes Aycyyy  at the points through which the elastic symmetry
elements pass (¢ = 0°) are most likely caused by an imperfection of the shear wave
converters, i.e., by the energy fraction that is detected in the so-called "dark field". At
these points, Aycygy amounts to 0.126-0.141 of the maximum amplitude. However, as
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o increases, Aycygy grows reaching the maximum at a = 45-60°. The further increase
in o > 60° results in a decrease of Aycyy which, for a = 90°, reaches the values of
0.1-0.126, which are close to those observed for o= 0°.

Figure 3.3 presents the measured
dependence of Aycyn versus «; the averaged
results of measurements are shown by the |
dashed line. 0sl oy W

Thus, the shape and relative sizes of 1 7 et e \
acoustical polarization diagrams, particularly .1 / "\
of the Aycyyy  diagram, obtained for the L3 L
crossed polarization vectors, may indicate, for !, |
example, the degree of disorientation of elastic o 2 50 &, fpab
symmetry elements in the crystalline grains of
both polycrystalline and polymineral rocks. Fig. 3.3. Measured amplitudes Aycun

'It is necessary to note that the SWD effect ;’hEestgr;gg davr;%!gtigh iaavscr:;,? show
manifests itself on the background of the usual
change in the degree of ellipticity of shear
waves while propagating in anisotropic media [Lyamov, 1983]. Consequently, the
method used to detect the effect must not be sensitive to such a change. One such
method is provided by the acoustical polariscopy. The SWD effect will manifest itself
in the following conditions.

1. If the elastic symmetry elements in layers or grains composing the
anisotropic medium are relatively disoriented within an angle range of 10-
80°, the propagation of linearly polarized shear waves in the directions
close to the normal to the disorientation plane is accompanied by their
depolarization, i.e., by their greater ellipticity. This phenomenon, called
the effect of shear wave depolarization (SWD), is mostly manifested in
the case when the elastic disorientation angle in grains (layers) is close to
45°.

2. The SWD effect can be found in acoustical polarization diagrams for
multicomponent media in the case when the polarization vectors are
crossed and the minimum amplitudes Ay are appreciably higher than
those detected by the acoustical polariscope without a sample, at the same
points of the polarization diagram. The SWD effect allows us to estimate
the elastic disorientation angle in grains (layers) of mono- and
polymineral rocks.

3. Unlike a similar phenomenon observed in inhomogeneous media
transmitting shear waves, the SWD effect is detected only in one or two
directions in anisotropic media whose structure is characterized by
different-oriented elastic symmetry elements.

4. Based on the analysis of the data on shear wave propagation, obtained, for
example, by using the acoustical polariscopy technique, an anisotropic
heterogeneous medium actually consisting of mutually orthogonal elastic
layers (grains) can, in contrast, be identified as an isotropic one.

ABC Min
06+
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4. EQUIPMENT FOR ACOUSTOPOLARIZATION MEASUREMENTS
4.1. Peculiarities of measuring elastic wave velocities in anisotropic media

When choosing a method and devices for measuring elastic wave velocities in the
samples of greatly absorbing anisotropic media of great importance are geometrical,
wave and energy conditions of wave propagation. First of all let us briefly consider
geometrical conditions of energy transfer from transducer-source to a medium.
Generally vibratory energy can be transferred by a point, linear and flat source
radiating along a surface (in a particular case — along a plane). As follows from
[Brekhovskikh, 1973; Skuchik, 1976], a wave amplitude from the point source
decreases with distance due to geometric divergence of the power on the wave-front
(generally — spherical, ellipse-shaped or a more complicated surface), as well as due
to absorption and diffusion.

With the spherical front, due to the geometric divergence, the amplitude of the
wave A, increases inversely with the distance [Skuchik, 1976]

A =20 g 4.1)

where A is the initial amplitude, x is distance to the source, a; is the factor of
absorption and diffusion in the spherical wave.

An idealized linear source of an infinite length excites a wave with a cylinder-
shaped front. A the distance x increases the wave amplitude decreases proportionally

tol/\/;:

x:ﬁe “, (4.2)

where ¢, is the factor of absorption and diffusion in the cylindrical wave.

If the source is flat (or, to be more exact, local-flat, according to G.I. Petrashen,
[1980]), then as the distance increases there are no losses due to divergence. Thus, the
flat source, unlike the point and linear ones, decreases the losses of the wave energy
as the front propagates in an elastic medium. Such a source is the most suitable for
measuring parameters of greatly absorbing heterogeneous media. Such media are, for
instance, rocks.

But besides the mechanisms of divergence, diffusion and absorption elastic
anisotropy of the sample media greatly influences the wave propagation. As practice
shows, anisotropy of elastic properties is typical of minerals, it is also registered in
volcanic, metamorphic and sedimentary rocks [Nevsky, 1974; Chesnokov, 1977].
Determination of elastic wave velocities in anisotropic rocks has its own peculiarities.

Solving this problem requires examination of specific distinctions between phase
Vi and radial (group) v; velocities, as well as particular conditions of exciting and
reception of waves [Petrashen', 1980]. The distinctions between V; and v; are most
conspicuous on the diagrams (Fig. 4.1a, b).

The radial velocity v; of disturbance is calculated according to the ray, for
instance, OM; — for quasi-longitudinal gPV (i = 1), OM, for quasi-shear ¢SV (i = 2)
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and OMs; for the wave ¢SH (i = 3). The rays OM,, OM, and OM; are the directions of
wave energy propagation. The phase velocity V; (i=1, 2, 3) characterizes the travel
velocity of extended sections of the wave
fronts in the normals direction to them. It is
precisely the phase velocity V; value that enters
into the known Green-Christoffel equation
(1.1) that allows one to calculate all the
elasticity constants of an anisotropic medium.

In isotropic media one can observe an
equality of the radial and phase velocities in
any direction. In anisotropic media such an
equality is observed only in some particular
directions coinciding with the direction of
elastic symmetry elements. In an isotropic
medium the curves for radial velocities v; (i =
1, 2, 3), Fig. 4.1a and 4.1b, are regular circles,
the circles i =2 and i =3 being superimposed.

In anisotropic media the relationship
between V; and v; is always observed
[Dieulesaint et Royer, 1974]

o).

/)

Vii(ﬁvl. )=1. (4.3)

Fig. 4.1. Typical curves of the radial

This relationship means that the phase velocity ~ Velocities Vin front for waves i =1, i
V; of the front (its element) is the projection of = 2 (a), for the wave i = 3 (b),
the radial velocity on the normal direction to ﬁ:ggi?ﬁtmg in transverse-isotropic
the front 7. '

Let us consider in greater detail
propagation of waves in an arbitrary
weakly anisotropic medium, Fig. 4.2.

From the point source O at the
time point ¢ along the ray OM'M" the
waves will reach the point M". At the
time point ¢ + At the waves will reach
the point M". The ray OM'M" is At
directed to the symmetry element OZ :
of the medium at ¢ angle. It is not
difficult to show that in a
homogeneous medium the spatial
direction of the normal 7 to the wave
front at the points M’ and M" at the

time points # and 7 + Az will be the Fig. 4.2. Propagation of elastic waves in a

same. The angle between the‘normal homogeneous weakly anisotropic medium of
n and symmetry element OZ is equal  an arbitrary symmetry type.

to 6 From point M’ to point M" along

the ray OM'M" the waves pass the

distance of v;Af during At time with the radial velocity v; During the same time the
wave front will pass the distance V;At with the phase velocity V..

=1
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Judging by the relative displacement of the points M' and M" (Fig. 4.2) with the
point source of waves in an anisotropic medium, as the waves propagate, in a general
case, a lateral displacement of points occurs. Accordingly, as the distance VAt
increases, the point, at which the maximum amplitude (maximum energy) will be
registered, moves farther and farther from the normal 7, passing through the point O.
Thus, when using point sources and receivers for measuring the phase velocity values
of the wave front, one should observe at the points M’, M" etc. But the distance
covered by the waves should be counted from the normal #» making an angle € with
the axis of the medium symmetry OZ. Practical performing of such operations is
rather labour-intensive.

Now let us consider

the propagation 2

peculiarities of radial and \ y
phase fronts from plane \ //
sources. A plane (locally IN% ~

plane) source of waves \ - 3\\ }/5/6 7

may be imagined as a sct T
of point sources arranged P - V. ot

in the plane and oscillating

synchronously, Fig. 4.3. ]
According to the -~ T [\ n

Huygens principle, a wave Ath l—)\

front is a family of )

envelopes, in which the 7\

normal to extreme points
is the normal to the plane, Fig. 4.3. Family of envelopes that, according to the
where the sources are Huygens principle, are a front of waves from point sources
placed. As follows from lying in one plane.
Fig. 4.3 the position of the
normal to the front is preserved at the moments Af, At, At" and any others. As in Fig
4.2 with the point source, Fig. 4.3 shows that the normal n in relation to the
symmetry element OZ preserves the angle 6 which does not change its value as a
wave front propagates.

If point sources are located in one plane close to each other (a plane source), then,
excluding edge areas, the emitted front will be plane. The element ds of such a front

moves along the vector v,, remaining parallel to itself, Fig. 4.4.

From this Figure it follows that over the time At the front element ds passes along
the vector v, from the

source to the receiver with (L L L L L L L Ll L L L)t

the radial velocity v; and at i

the same time along the Vo At

ort n with the phase

velocity V.. The YA A VAN A A A4 t+ﬁt

considered peculiarities of
elastic wave propagation
from point and plain
sources can be observed
during propagation of both

Fig. 4.4. Propagation of the reference element ds of the
expanded plane front in an anisotropic medium.
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quasi-compressional and quasi-shear waves at any direction of their polarization
vectors.

Figures 4.3 and 4.4 and the relation (4.3) allow one to draw conclusions that are
necessary for proper practical measurements:

1. The time of wave propagation corresponding to the value of phase velocity V; is
measured independently of the element and symmetry type of an anisotropic medium
in samples bounded by plane-parallel surfaces with the help of plane (local-plane)
sources and receivers of waves.

2. If we define the orientation of a medium symmetry elements, for instance, with the
acoustopolarization method [Gorbatsevich, 1995], then the angle & will be equal to
the angle between the normal to the plane-parallel surfaces bounding the sample and
orientation of a symmetry element.

Besides these condition it is necessary to provide even distribution of amplitudes
(pressures) in the cross-section of the bundle of rays (within the local-plane front)
passing from the source to the sample [Skuchik, 1976]. For example, in the near zone
(Fresnel zone) the amplitude of waves from a plane source (made in the form of a
disk) in the cross section (in relation to the axis of the radiated bundle) varies in a
complicated manner. Within this zone a great variation of the registered wave
amplitude is observed. The far zone (Fraunhofer zone) begins at a certain distance of
the front from the source. At this point the amplitude distribution along the radiating
surface becomes monotonous. A transition from the near to far zone occurs when the
following condition is met [Tyulin, 1976],

X R 4 (4.4)

where x is a distance from the plane source, R is a radius of its radiating surface, 4 is a
wave length.

Thus, to provide even distribution of the amplitude within the cross section of the
bundle of radiated waves it is necessary to use buffer rods (acoustic lines) whose
length should be determined by the condition (4.4). Long acoustic lines also promote
increasing the area of the local plane front. They are often used for increasing the
accuracy of measurements [MacSkimin, 1950].

In conclusion we shall point out one more important and evident requirement:
when measuring elastic characteristics of such heterogeneous and anisotropic media
as rocks, the propagation ways of the ray bundles of compression and shear waves
should coincide. Herewith it is very important to provide coincidence of contact
conditions as well [Gorbatsevich, 1995].

The above analysis allows one to formulate general requirements for
measurement equipment. Meeting these requirements ensures correct and exact
measurement of phase velocities of compression and shear waves:

1. Ultrasound sources and receivers (transducers) should be plane (locally plane).

2. A radiating transducer should form a non-divergent or weakly divergent beam

of ultrasonic waves.

3. To increase accuracy in the measurements it is necessary to use buffer rods

(acoustic lines) which size is larger than Fresnel zone.

4. Oscillations in the ultrasonic wave impulses should be monofrequency ones,

their frequency should be the same for compression and shear waves.
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5. The propagation way of the ray bundle of compression and shear waves
should be the same. Contact conditions on the sample-transducer boundary
should be identical, too.

4.2. Requirements for devices and materials

To conduct acoustopolarization determinations and measurements of
compression wave velocities in anisotropic samples one may use impulse ultrasonic
devices (defectoscopes) for example of Krauthkramer type etc. with oscillographical —
on the electron-beam tube (EBT) and digital indication of results. The repetition
frequency of outgoing pulses should be higher than 25 Hz, while the amplification
factor — no less than 1-10°. A step control of the input signal in 1 dB within 0-60 dB
is also necessary. The device band pass may vary within 0.4-10.0 MHz. The
determination accuracy of the travel time of an ultrasonic pulse should be no less than
1-:107-1-10" 5 and the scanning time - within (10-200)-10Cs.

The mentioned accuracy of the time |
determination can be attained by the circuit, in ; 520027 S 2
which a frequency meter, used in the regime of
time interval counting, is connected to an
ultrasonic defectoscope. In this case the pulse from
the pulse generator is applied to the frequency
meter input and starts time counting, while the
pulse from the ultrasound waves receiver,
amplified by the device amplifier (or strobe pulse),
is used to stop the frequency meter counting.

For acoustopolarization determinations and
velocity measurements transducers radiating
intensive linear-polarized pure shear waves are
needed [Bergman, 1954]. The transducers whose  Fig 4.5 Transducer of shear
design is given in [Gorbatsevich, 1995] meet these ~ waves with the converter of
requirements. The most efficient is the transducer, = compessional waves into shear
which acoustic line consists of two parts (Fig. 4.5). ~ waves [Patent No. 785737,

The basic frequency of transducer waves is %JSSR.]' . .

. . — piezoplate; 2 - acoustic line
determined by the piezoplate natural frequency and  first part; 3 - acoustic line
may make up fy = 04-10.0 MHz. For second part.
determinations it is necessary to have two pairs of P, S — rays of compression and
shear wave transducers, one, for instance, with  Shearwaves, accordingly.
natural frequency of 0.7 MHz, the other — 1.1
MHz. On the transducer case the direction mark of polarization vector (PV) should
be.

TETT \\l\\w\\ Y

RN

N

The shear wave transducers prepared for measurements should be subjected to
check-up. For this purpose two similarly designed transducers rated at one and the
same natural frequency are connected together at their working surfaces by a special
contact medium. The PV mark of the source is made coincident with the PV mark of
the receiver. The shear wave pulse originated on the EBT screen should consist of 6-
10 individual periods (Fig. 4.6).

The waves in the pulse should be monofrequency ones, close to harmonic; they
should not be distorted by bends. The check is performed in the following order:
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1. One measures the amplitude Apy, of the pulse located along the sweep trace in front

of the shear wave pulse and the factor Aypy (Fig. 4.6). The pulse ratio should follow

the inequality Apy/Aypar< 0.1.

2. One of the transducers is turned by an angle

of +90° from the PV position of the other

transducer and the signal Aycyn minimum is

fixed. Then the same transducer is turned by an

angle of -90° from the PV position of the other

one and the pulse 4y amplitude is fixed. The

measured values should be in the ratio

AVCMI/AVPM < 015, AVCMQ/AVPM < 0,15 and

differ from one another by no more than 10%. .

3. One of the transducers is turned by an angle Fig. 4.6. Shear wave pulse on the
.. ultrasonic device screen.

of 180° from the PV position of the other one. ;s the moment of its first entrance.

The measured amplitude Aypi of the pulse

envelope should differ from the 4yp), by no more than 10%.

Even more qualitative check of the transducers pair may be performed if we plot
the indicatrix of their polarization vectors (Fig. 4.7). If the transducers radiate linear-
polarized purely shear waves, then the indicatrix points should lie on the regular circle
line [Volkova, 1974].

As is known, for efficient transmission of
compression waves from transducers to a sample
water, mineral oils and glycerine are suitable. If it
is necessary to make measurements on a large
number of samples, vacuum rubber plates 1-3 mm
thick are glued on to the transducers' contact pads.
These plates are a contact medium. A similar
contact medium may be polyurethane. But a
transmission of shear waves through contacts
presents some difficulties.

Physically, liquids, i.e. media acquiring the
shape of the vessel they are placed in, do not
possess shear elasticity and cannot transmit shear
waves. Gluing transducers to a sample with
hardening glues is very labour intensive
[Merkulov, 1968]. Numerous attempts have been
made to use water, transformer oil [Volkov &
Grebennik, 1988], the solution of rosin in alcohol, glycerine, unhardened epoxy resins
[Alyoshin et al., 1968] to transmit shear waves from transducers to a sample.
Following Alyoshin [1968], an application of liquids with high viscosity has the
greatest effect — the higher the viscosity, the fewer the losses. A number of
experiments helped us to establish that liquids with polymer properties having low
shear elasticity at low frequencies and high shear elasticity at ultrasonic frequencies
are more suitable. For instance, unhardened epoxy resins pertain to media with
required properties. But epoxy resins are toxic; they are difficult to remove from the
sample with corrosive liquids, such as acetone.

For a long time we have been using a high-viscous solution of non-crystallizing
polysaccharides as a contact medium [Gorbatsevich, 1982]. Such a solution may be
prepared, for instance, from artificial honey. By evaporating the solution is brought to
high viscosity. The solution viscosity is checked up at high temperature. The solution

a

I

Fig. 4.7. Polarization vector
indicatrix of the shear wave
transducers.
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taken on a rod should not flow down from it. The contact medium prepared in such a
way transmits shear waves efficiently at frequencies from 0.3 MHz and higher, allows
transducers' rotation relative to the sample at a speed of about 1 rev/min and is easy to
remove with water.

4.3. Design of acoustopolariscope with rotating platform

Recently several designs of acoustopolariscopes [Gorbatsevich, 1995] have been
developed. They are of two main types — with rotating handle and rotating platform.
The most frequently used by us is the acoustopolariscope with rotating platform
[Patent No. 1281993, USSR]. When using the acoustopolariscope with rotating
platform the sample fixed on the rotating platform in the course of measurements
rotates relative to immobile ultrasonic transducers (Fig. 4.8).

Fig. 4.8. Design of acoustopolariscope with rotating platform.
(1) base; (2) pole; (3) bracket; (4) travelling rod; (5) transducers; (6) sample; (7)
rotating platform; (8) additional bracket; (9) angle scale; (10) pointer.

The apparatus comprises a base (1), a pole (2) fastened in it and a bracket (3)
placed on the pole. A travelling rod (4) passes through the bracket bush. At the rod
lower end and in the base there are sockets, in which upper and lower transducers (5)
are located. They are meant for radiating and reception of pure shear linear-polarized
waves. A sample (6) is fastened on the rotating platform (7) with holders. The rotating
platform itself is set on the additional bracket (8). On the rotating platform there is a
scale (9) for calculating a rotation angle of the sample in relation to the polarization
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vectors (PV) of the transducers. The calculation of this angle is made with respect to
the mark (10) on the additional bracket.

Along the pole (2) and rod (4) grooves have been made and in the bracket bushes
keys and stoppers have been fastened to key the brackets and rods position. The upper
and lower sockets design allows for the rotation of the transducers fastened in them.
To calculate the angles of the transducers mutual rotation angular scales have been
placed on the sockets.

The socket base of the upper transducer fits into the rod cavity where a spring is
located. In the rod opening there is a pin fastened in the socket base. The pin and
opening ensure the spring initial compression and transducer elastic motion in its axis
direction. The socket base of the lower transducer fits into the cavity of the base (1)
cowling. In the same cavity is the spring ensuring, as the corresponding pin and
opening, elastic travel of the transducer (without its rotation) in the direction of its
axis.

Additionally in the lower socket there is an external and internal cups. In the
external cup there is a circular groove, the internal cup is connected with the handle
going from the groove outside. The cups, circular groove and handle allow one to
rotate the lower transducer exactly through 90°. In the external cup there is a fixing
rod that enables to fix the handle in its extreme positions. The transducers (5)
conductor cables are connected to an ultrasonic device. As the device design of Fig.
4.8  suggests, the
rotating platform with
the hole in the centre,
the angle scale and
sample holder allows
one to make
measurements  within
the sample complete
rotation relative to
transducers
polarization  vectors.
Spring-loading of the
transducers sockets
enables to eliminate
the gaps between the
contact surfaces of the
transducers and
sample. Figure 4.9
presents the device

photo.

A more perfect
type of
acoustopolariscope

with rotating platform
and three poles (Fig.
4.10) has Hooke's joint
connected with the Fig. 4.9. General view of acoustopolariscope with rotating
upper transducer cup. Platform (Patent N 1281993, USSR). One pole type.

The total load on the

contact surfaces of the
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transducers and sample is realized through a spring. Hooke's joint substantially
decreases the measurement errors even if the sample faces are not quite parallel.

Fig. 4.10. General view of acoustopolariscope with rotating platform.
Three pole type.

The last design has a mechanical drive of the rotating platform (Fig. 4.11). The
rotating platform through the worm-wheel, placed on its rim, is set in motion by an
electric motor. The indicating instrument is interfaced with a personal computer by a
special controller. The registered envelope amplitudes of the signal that has passed
through a sample are digitized and processed. The computer plots and issues on the
printer finished VP and VC acoustopolarigrams.
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Fig. 4.11. General view of the automated acoustopolariscope with ultrasonic device and
computer (The authors of this construction are Golovataya O.S, Gorbatsevich F.F.)

The mentioned types of acoustopolariscope design (Fig. 4.9-4.11) enable to make
acoustopolariscope measurements over a wide range of ultrasonic frequencies (0.4-3.0
MHz) and sample sizes (10-100 mm).

4.4. Combined transducers for radiating and reception of compression and shear
waves

Using the processes of reflection and transformation on the media interface we
have elaborated combined (integrated) transducers of compression and shear waves
[Gorbatsevich, 1995]. The design of one of these transducers is given in Fig. 4.12. In
the transducer's container housing (1) there are
compression waves piezoplates (2) glued to the
acoustic line made up of two parts — a contact
(3) and face (4) ones. On the contact part there
are ribs to weaken the waves transmitted along
the acoustic line surface. The acoustic line
contact part is made of electrolytic copper (V)
= 4.75 km/s, Vy = 2.26 km/s), while the face
part is made of lead (¥, = 2.16 km/s).

When an electric pulse is applied to the
piezoplate located on the acoustic line face
part, a compression wave pulse is excited,
which on the plane dividing the contact and
face parts is transformed into a shear wave _ , .
pulse. The latter gets into a sample through the Figure 4.12. Design of combined

. transducer on copper-lead media.
contact plane. The compression wave pulse 1 _ . ntainer housing; 2 -
arisen during the electric pulse application to piezoelements; 3 — acoustic line
the piezoplate will reflect from the dividing  contact part; 4 — acoustic line face
plane. Then at an angle of reflection equal to ~ Part; 5 — fastening of container
the angle of incidence, it will get into a sample ~ "©usina to the acoustic line.
also through the contact plane without transformation into a shear wave pulse. On the
basis of the combined transducer of such a type an elastic waves velocity combined
meter (Fig. 4.13) has been developed.

The meter comprises a pair of combined transducers of ultrasonic waves (1), a
stand (2), a switch of the work type (3), an ultrasonic device (4), connected to a digital

4 5
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frequency meter (5), that is used for measuring short intervals of time. Figure 4.14
gives an external appearance of the device. The principle of operation follows from
the design (Fig. 4.13). Depending on what piezoelements of the combined transducers
are connected to the device with the switch (3), either compression or shear waves are
radiated into a sample.

The special switch has a peculiar design. It consists of two individual units that
are completely shielded from each other — a generator unit and a reception one. The
piezoplates switching for radiating and reception of either compression or shear
waves is performed by switches with a common handle. To fasten the combined
transducers and to keep their contact surfaces plane-parallel during mutual travel a
special stand has been designed.

The advantage of the meter is in reduction of the time required for measuring the
elasticity constants of solid media, since measuring of ¥}, and Vj is performed at one
application of the transducers to the sample. In this case the accuracy of determining
the elasticity constants increases due to sheer coincidence of contact conditions,
frequency and the ways of propagation of compression and shear wave rays.

The above
measurement principles 7
should be guided by in —
experimental

. .. . o ¢
investigations of elastic O D E

)

|4

properties of anisotropic
solid media. They allow z
one to conclude that to ,r Y
obtain  the correct p
evidence it is necessary
first to determine the
orientation of symmetry
elements by the
acoustopolariscopy
method.  Then  one H Ié
should measure the '

density and velocity of :
e

-
1
|

_—— 1 __11

compression and shear
waves in the directions L J
coordinated with the ~ ~
revealed symmetry
elements.

It should be noted that
the time of wave
propagation corresponding to the phase velocity is measured independently of the
element orientation and symmetry type of the anisotropic medium in samples limited
by plane-parallel surfaces with the help of the plane (locally plane) source an receiver
(see Fig. 4.3). The acoustopolariscope and velocity meter compensate for the lack of
equipment required for determination of all parameters of elastic and non-elastic
properties of an anisotropic heterogeneous solid body.

=

Figure 4.13. Design of elastic wave velocity combined meter.
1 — transducers; 2 —stand; 3 —switch of the work types; 4 —
ultrasonic device; 5 — digital frequency meter.
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Fig. 4.14. External appearance of elastic wave velocity combined meter (without digital
frequency meter device).
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5. ACOUSTOPOLARISCOPY PROCEDURE
5.1. General requirements for measurements

Investigation of anisotropic media elastic properties covers preparation of a
sample for tests, obtaining acoustopolarization diagrams, construction of spatial
arrangement of elastic symmetry elements, determining elastic waves (compression
and shear) velocities along the revealed elements and at certain angles to them. The
last stage includes determination of a symmetry type and calculation of the sample
elasticity constants.

As is well known, the sample acoustopolariscopy along a particular direction
allows one to obtain only one projection of the elastic symmetry element (axis or
plane). Besides, the measurements of elasticity characteristics made along the
symmetry axis of transversely isotropic medium do not allow one to discriminate
between this symmetry type and an isotropic one [Fyodorov, 1965; Shaskol'skaya,
1976]. The diagnostics of such media is possible only when the data are obtained in
two non-equivalent projections. The spatial arrangement construction of a symmetry
element of any medium is possible on the basis of no less than two projections. That
is why the preferable form of the sample for tests is a cube or parallelepiped. The
measurements made on two pairs of a cubic sample faces, as a rule, enable to
determine the projections of two symmetry elements. The measurements made on the
third pair of faces allow one to confirm the correctness of determinations performed
for the other two pairs. This control measurement enables to increase the
determination accuracy.

The final result of the measurements is determination of a mutual spatial
arrangement of elastic symmetry elements of the medium, its symmetry type, degree
of anisotropy and the values of constants of elasticity or rigidity [Nye, 1964].

Sampling for the subsequent manufacturing of samples should meet certain
requirements [Acoustopolarimetry..., 1990]. For instance, when processing a rock
sample one of the faces should be sawn to coincide with the foliation plane while the
edge should be oriented along the linearity in the foliation plane. The linearity may be
identified, for instance, by the elongated form of mineral grains (amphibole, biotite
etc.). If plane and linear elements are not seen in the rock, the orientation of the
sample faces may be of any kind. It may also be related to mining and technological
parameters, for instance, to the borehole or mining working axis direction. The face
direction of mineral samples should be determined by the orientation of the symmetry
crystallographic elements.

The minimum length of a cube edge / is determined from the relation [GOST
21153.0-75]

1>V = (5.1)

P
v

where V), 1s the compression wave velocity; dt is the absolute error in time reckoning
equal to half the scale marking of the measuring instrument, o, is the given relative
error in the velocity measuring. The minimum size / should be also subject to the
condition
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123V, /fo . (5.2)

Sample sizes meeting the above conditions are indicated in standards including
foreign ones [GOST 21153.0-75, D2845-83]. The sample faces are processed and
reground in such a way that the results can be reproduced. The sample prepared for
measurements and its indexing diagram are given in Fig. 5.1.

5.2. Acoustopolariscope adjustment

Before the acoustopolariscopy performance the acoustopolariscope should be
adjusted. The purpose of the adjusting first stage is determining the mutual
arrangement of the polarization vectors (PV) of the upper and lower transducers. At
the second stage the transducers are set so that the lower transducer PV is oriented to
0° on the rotating platform angle
scale (Fig. 4.8). At the "vectors
parallel" position  the PV i
orientations of the upper and lower
transducers should coincide. 3

To conduct the adjustment | J
second stage an anisotropic material | ' /
with the known orientation of l* @ e -~
symmetry elements is required. A g
long bar should be produced of this DS B I —
material in such a way that its long
side was parallel to a symmetry |
element. The length of this trial bar 3/ F e e
should be equal to the diameter of il I
the rotating platform angle scale. Its '

1

width should be no less than the

diameter of the transducers contact

surface. A segment of a wooden

ruler with a well-defined structure Fig. 5.1. Sample indexing diagram.

may be used as such a medium. For 1,2 and 3; (1), (2) and (3) are indexing of the

better orientation a cutting line sample directions and faces, respectively.

should be drawn along the structure

lines through the ruler centre.

The acoustopolariscope adjustment covers the following operations.

1. To set the transducers in the acoustopolariscopy sockets and fastened by lock
SCTews.

2. To apply a contact medium to the centres of the transducers working surfaces.

3. To move the device handle leftwards against stop to the position "vectors
crossed" (VC) and fasten it.

4. To combine the transducers working surfaces, to free the turn stopper of the
upper fixture and looking at the device screen find the position VC. At this
position the signal amplitude on the screen will be minimum. To fasten the turn
stopper of the upper fixture.

5. To apply a drop of the contact medium to each of the two sides of the test bar and
place it between the transducers.

46



10.

Turning the bar around the axis that passes through the transducers centres, to
find its position at which the signal minimum is observed on the screen.

To superpose "zero" on the rotating platform scale with the rotation angle pointer,
to count angle a; between the rotation angle pointer and the cutting line on the
bar. To move apart the transducers working surfaces, to take the bar out of the
gap between them.

To free a stop screw, to turn the lower transducer by an angle «; to the side
opposite to the direction of counting the angle ¢; from the rotation angle pointer.
After that to fasten the lower transducer in the socket by the stop screw again.

To apply the contact medium to the centres of the transducers working surfaces,
to superpose the transducers working surfaces. To free the turn stopper of the
upper fixture and watching the signal on the screen to find the position VC again
(see point 4). Then to fasten the turn stopper of the upper fixture.

To perform operations according to points 5 and 6. If the cutting line on the bar
coincides exactly with the rotation angle pointer (and at the zero on the scale of
the rotating platform combined with the pointer the line passes through 0° and
180° of the scale) the adjustment may be considered to be completed. However, if
between the texture line and the mark of the rotation angle pointer there is some
angle o, the operations according points 5-9 should be repeated.

After all adjustment operations the handle is moved rightwards against stop to the

position "vectors parallel" (VP) and is fastened in this position. In this case the
transducers polarization vectors are on the line passing through the rotation angle
pointer and centres of the contact pad.

5.3. Acoustopolariscopy performance

Polarization measurements of the test media samples are aimed at determination

of the elastic anisotropy degree, effect of the linear acoustic anisotropic absorption

(LAAA)

and spatial orientation of elastic

symmetry elements. The measurement procedure
is comparatively fully set forth in the works
[Lucas, 1961; Acoustic polarization..., 1985]. The
measurements are performed by
acoustoplariscopes, which designs are given in
Figures 4.9-4.11. Before the measurements the
transducers of shear waves are connected to an
ultrasonic device so that the upper transducer is a
radiator. Then the travelling platform is set at the
angle scale zero mark opposite the mark on the
additional bracket. The marks of the transducers
polarisation vectors are aligned.

The transducers contact surfaces and sample
working faces are lubricated by a contact medium.
In this case one must be careful that the contact
medium coats the contact surfaces of the
transducer and sample evenly without breaks and
bubbles. After the sample has been set on the
contact surface of the lower transducer and
fastened on the rotating platform the rod with the

Fig.
metadiabase. Solid and dashed
lines are for parallel and crossed
polarization vectors, respectively. |,
Il are projections of symmetry

5.2. Acoustopolarigram of

elements; f;, pB. are angles
between the directions  of
symmetry elements projections
and a sample face.
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upper transducer is delivered downwards until there is an acoustic contact between the
transducers and sample. Herewith compressing the spring at the rod base and fixing it
in the compressed state, a uniform pressure of the transducers contact pads on the
sample faces is ensured. Some time is required for the contact medium to form a thin
even layer in the clearance between the transducer and sample. As a rule, on
completion of this time the amplitude of the shear pulse (Fig. 4.6) on the device
screen ceases to increase.

The measurements consist in moving the
rotating platform with a step of 1°, 5° or 10° and
fixing the amplitude Aypy of the shear waves
passing through the sample (Fig. 5.2). The
measurements at the VP position are concluded
when the angle count pointer is set at 360°. In the
course of measurements to exclude the impact of
non-linearity of the internal circuits of the
ultrasonic device and its amplifier, it is
recommended to maintain the same signal on the
electron-beam tube (EBT) screen by the
attenuator's handles. In this case the attenuation
degree in decibels will reflect relative changes in  Fig. 5.3, Acoustopolarigram  of
the signal level in the course of measurements. amphibolite with LAAA

On completion of the measurements at the  manifestation, «p is the angle
VP position, the fixing rod is freed and the lower ~ Detween the axis of the greatest
transducer is turned by 90° with the handle and transmission” and a normal to

. . .. sample face.
fixed in this position. Thus the transducers
polarization vectors appear to be at the crossed position (VC). A set of amplitude
Aycy measurements (at VC position) are made with the same step within a full angle
27 of the platform rotation.

If within the rotation angle 0-360° alterations of the relative amplitudes at both
VC and VP positions are not registered, the measurements should be repeated. To this
effect the transducers with a natural frequency that is not a multiple to the initial one
are installed in the acoustopolariscope sockets.

To increase precision the measurements can be ,
duplicated at the reverse motion of the rotating ‘
handle or platform. Such a measure will allow one
to assess the alteration of the contact medium ¢ %
thickness under the spring and to exclude the N9
impact of this alteration when processing the data. J / 1 A

After observations of the amplitudes 4ypys, and / \
Aycu variations acoustopolarigrams are drawn in 7 d ‘t‘
the following order: / )
1) the values of Aypy (in decibels) within the /

angles of 0-360° are examined and the

maximum one (Ay4x) is found;
2) every Aypy is extracted from Auyax; Brp = Avax  Fig. 5.4. Symmetry elements

- Aypu, dB; projections marked on the
3) Aycw is extracted from Apux; Byc = Amax - S@mple faces by acousto-
Avew, dB: polarization measurements.

4) using the table of conversion of decibels to
relative amplitudes, by the values of Byp and Byc corresponding relative
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amplitudes Aypy and Apcy are found. They are initial for drawing

acoustopolarigrams. As a rule, the acoustopolarigrams are plotted in polar co-

ordinates.

The points Aypy are connected with solid lines and the points 4y with dotted
ones. The figure outlined by the solid line is the VP acoustopolarigram and that
outlined by the dotted line — the VC acoustopolarigram (see Fig. 1.4, 5.2). A computer
programme for data input and drawing acoustopolarigrams is available (see
Attachment 1).

By the VP acoustopolarigram the degree of LAAA effect for the medium D and
the angle ap of the greatest transmission (GT) axis are determined, Fig. 5.3. The angle
ap is determined between the axis O and the strait line drawn through the polar axis
and opposed maxima Aypyn and Ayppypn. The LAAA degree is calculated by formula
(2.3).

On the VC acoustopolarigram strait lines are drawn through the polar axis and the
opposed minima of the envelope Ay (Fig. 5.2). These lines are the projections of the
symmetry axes and planes of the sample medium. The angles £ and 5, between the
co-ordinate axis and the strait lines drawn allow one to fix the location of the
symmetry elements projections relative to the sample sides.

At the final stage the symmetry elements projections are transferred to the sample
sides (Fig. 5.4). They characterize the peculiarities of the medium elastic anisotropy
in three mutually perpendicular directions. The parameters of the spatial orientation of
the elastic symmetry elements can be determined with Wolf's stereographic projection
[Acoustopolarimetry..., 1990]. In the event that the revealed symmetry elements are
not parallel to the sample sides, to perform further measurements one should cut in
the sample the planes oriented along the revealed elements.

As an example, in Fig. 5.4 the line abc shows the plane formed by the elements
a'c’, a'b"and b'c’. Cutting the planes parallel to abc as well as perpendicular to them is
performed in such a way that a new cubic sample or parallelepiped is produced.

5.4. Elastic wave velocity determination

The necessary measurements are made on the sample whose sides are parallel and
perpendicular to the revealed symmetry elements (Fig. 5.5). The combined meter of
compression and shear wave velocities (Fig. 4.14) enables to make measurements
most exactly and efficiently.

Before the measurements the sample is placed
between the transducers so that its centre coincides /
with the centre of the contact pads. When Vi Yias Yo
measuring Vs, the transducer polarization vectors

]
(PV) are superposed with the symmetry element : g
projection of the media marked off on the sides. In :t(jl !2’ 2
the course of measurements the travel time of | _%2 Bl Wy
compression ¢, and shear #,; and #, waves in the / Vay
sample is determined. To increase determination 91 """ > Vas
reliability of the first entry point of shear waves, T"/a =
one should turn the upper transducer by an angle l{:e

from the position where its PV coincides with PV
of the lower transducer. All half-periods belonging  Fig. 5.5. Indexing of shear wave
to the pulse to be found change their amplitude  Velocities in a cubic sample.
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synchronously with the turn and at the point of the first entry a sudden change in the
wave phase is observed. If the difference between #; and ¢, is so small that it can be
compared with the scale factor of the measuring instrument, then only ¢ is
determined.

Compression and shear waves velocities V), are determined by an ordinary
formula

Vos = Ultys = ta), (5.3)

where [ is the distance between the transducers along the sonic test line, mm; ¢, 1s the
time of the wave pulse propagation from the source to the receiver, msec; ¢4 is the
time of the pulse delay in the instrument and transducers circuits.

If due to a small difference between ¢, and ¢, only #; u Vs have been
determined, then the calculation of V. is done by the following formula derived from
(1.7):

Vo = (360/lV1)/(360f0l + V1), (5.4)

where fj is the frequency of the transducers natural oscillations, Hz; / is the sample
length, m; Vy,;, msec; o6, grades, is the phase difference, calculated by formula (1.17).

In this case one should keep in mind that formula (1.17) provides a number of
angle values: o, 270, 47-6 etc. With manifestation of LAAA formula (1.17) gives
decreased values of o To calculate o, the values of Aypy, relative units, at the points
making an angle n/4 with the orientation of the medium symmetry elements are
usually taken.

After completing the measurement of all the velocity values for compression and
shear waves for all the cubic sample sides, the following indexing order of the values
under measurement is convenient to use:

Vi Vi Vi
Vi=Va Vi Vs (5.5)
Vi Vi Vi

where V), is the compression wave velocity measured in the direction 1-1'; V5, is the

same velocity in the direction 2-2'; V33 is the same velocity in the direction 3-3', V5 is

the shear wave velocity measured in the direction 1-1' with PV orientation in the

direction 2-2'; V3 is the same velocity in the direction 1-1' with PV in the direction 3-

3'. Similarly V51, V23, V31, V32 are marked. The measured values of Vj; are presented as

a rectangle table (quasimatrix). As will be shown later, the form (5.5) of presenting

the results is convenient for analysing the type of the medium elastic symmetry.

Thus, the above measurement procedure allows to reveal the following.

1. The number of symmetry elements in any desired section of the sample, their
arrangement and anisotropy presence.

2. Spatial location of the medium symmetry elements including their azimuth and
angle of incidence in the sample oriented to cardinal-points.

3. The presence of linear acoustic anisotropic absorption and other effects.
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The presented procedure enables to determine compression and shear waves
velocities in the directions coinciding with the orientation of the symmetry elastic
elements as well as in other directions that are necessary for calculation of the whole
set of elasticity constants. The procedure allows to present the measurement results in
the form that is suitable to analyse anisotropy in a sample.

To our mind, the acoustopolariscopy method as the radial-beam method for the
sonic test of a subject of inquiry can be applied not only to samples. The method of
seismic prospecting of a geological object [Patent No. 1434377] creates prerequisites
for transference of the above acoustopolariscopy principles to comparatively stretched
massifs. This method will allow to reduce expenditures on carrying out large-scale
determinations of anisotropy parameters in the massifs within the upper crust and
mantle by substituting the proposed method for the azimuthal one [Raitt, et al., 1969;
Markov, 1977]. We think that the acoustopolariscopy method may be useful when
solving some problems in crystal physics, in particular, when studying and developing
new composite, metal-ceramic and other future materials.
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6. DETERMINATION OF THE SYMMETRY TYPE AND ELASTICITY
CONSTANTS IN ANISOTROPIC MEDIA

6.1. Ways for determining the medium symmetry type and elasticity constants

As is known, the medium symmetry type is determined by the number of
symmetry elements, their appearance (axis, plane) and mutual arrangement [Berry et
al., 1983]. There are several ways [Tillman & Bennet, 1973; Prodaivoda, 1978;
Harder, 1988], that allow to perform the analysis of the elastic symmetry elements
from the measurements of the elastic wave phase velocity in several mutually non-
equivalent directions.

As mentioned in the introduction, anisotropic media can be described by triclinic,
monoclinic, rhombic, tetragonal, trigonal, hexagonal and cubic systems of elastic
symmetry. When calculating mineral elasticity constants, as a rule, to determine the
number and orientation of elastic symmetry elements, optical, X-ray-structural,
neutron transillumination and other methods are used [Belikov et al., 1970; Adamesku
et al., 1985; Aleksandrov & Prodaivoda, 2000]. The constant calculation is carried out
by using elastic wave velocities in crystal certain orientations [Voigt, 1910]. In some
cases crystal deformability indices were used for calculations [Belikov et al., 1970].
For instance, to determine elastic and piezoelectric constants of rhombic crystals by
the acoustic method, 4 samples are needed. The samples should be sawn at different
angles to crystallographic axes [Bogdanov, 1997]. Experimental determination of all
elastic constants of a low syngony mineral is a long and labour-intensive process
including different methods and inquiring a few samples of different shape. The most
complete enumeration of mineral elasticity constants is in the works [Belikov et al.,
1970; Alexandrov & Prodaivoda, 2000]. But a full set of elasticity constants has not
been determined for a large number of minerals so far.

For determination of the rocks elastic properties other approaches have been
developed. As has been shown before rocks are polycrystalline and most often
polymineral formations, whose elastic properties result from virtually indeterminable
number of grains [Voigt, 1910; Hill, 1952]. Every one of those grains has its own
elastic symmetry type and, accordingly, its own set of elasticity constants. Besides,
most often every grain is bounded by a surface of a very complicated shape. At this
surface one grain makes contact with another. But these contacts are seldom
continuous. In crystalline rocks grain-to-grain contacts alternate with microcracks that
arise as effusive rocks cool under metamorphic transformations, deformations etc.
Due to a great number of factors, that in fact have not been defined but they influence
the crystalline rock elasticity, the calculation of the rock elasticity constants can be
made only averagedly [Voigt, 1910; Hill, 1952; Belikov et al., 1970]. For these
reasons, on the whole, the system of elastic symmetry of polycrystalline formations is
higher than that of minerals composing the [Adamesku et al., 1985; Archean...,
1991].

If, for instance, a rock consists of mineral grains of triclinic and monoclinic
syngonies whose axes orientation is, on the average, determined, then this suggests
the presence of elastic anisotropy. But the orientation of such axes, as a rule, is
characterized by some statistical dispersion. In this case the rock symmetry system
will be higher than the mineral symmetry system. Therefore the majority of
crystalline rocks will be characterized by rhombic, tetragonal, hexagonal, cubic and
isotropic symmetry type. This is corroborated by the known experimental data
[Nevsky, 1974; Prodaivoda, 1980, Egorkina & Bezgodkov, 1987; Hess, 1964; Tien-
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When Lo et al., 1986; Chandra & Kenneth, 1988], as well as by the indirect
assessment results, obtained by microstructural analysis [Dobrzhinetskaya, 1978;
Kozhevnikov, 1982].

In conclusion we can say that elastic properties of crystalline rocks have both
determined and statistical components [Prodaivoda, 1991]. Their ratio should be
determined for every specific rock taken at every specific site. We believe that for the
most part the elastic symmetry type of crystalline rocks can be no lower than
orthorhombic. This consideration is based on the fact that the most frequent factor
forming the rock elastic anisotropy is the strain tensor, especially if those strains act in
the Earth crust during a long period of (geological) time.

The particular merit of the acoustopolariscopy method is that it allows to
determine the symmetry type of an anisotropy body before the stage of elastic wave
velocity measurement. The velocity measurements performed at the second stage are
made in the directions conformable with the orientation of the elastic symmetry
elements revealed with acoustopolariscopy.

Determined velocities put down in the form of quasimatrix Vj; (5.5) allow to
obtain additional information about the symmetry type of a solid body. At first the
symmetry type is determined by the number and mutual angles of projections of
elastic symmetry elements in every of mutually perpendicular directions in the
sample. An additional distinguishing feature of the transverse-isotopic symmetry type
is obtaining the VP acoustopolarigram in the circle form on one of the sample faces.
The analysis of velocity values by their ratios in the Vj; quasimatrix enables [see
Acoustopolarimetry..., 1990] to check up the conclusion concerning the symmetry
type being determined.

6.2. Analysis of location of symmetry elements in rhombic symmetry media

Let us consider a model of a thombic symmetry media consisting of two systems
of thin parallel layers. The layer systems are perpendicular to each other, as Fig. 6.1
shows. Assume that the layers lying in the plane through which the directions 1 and 2
pass are more high-velocity ones while as those lying in the plane passing through the
directions 1 and 3 are low-velocity ones. Accordingly, the plane 1 and 2 will be called
the plane with higher anisotropy and the y
plane 1 and 3 - with weaker one.

From Fig. 6.1 one can easily conclude
that the compression wave velocities will P S
obey the inequality system Vi, > Vay > Vi3,
For instance, if we orient a beam of shear
waves in the direction 1 with the 2
polarization vector oriented along the
direction 2, we should register the greatest L
shear velocity Vi, = V). The intermediate 3 Py
by value will be the velocity V13 = V3. The ] |
least shear velocity Vo3 = Vi, will be
registered along the direction 2 and 3 with
the  polarization ~ vector  oriented  Fig. 6.1. Model of thin-layered medium
accordingly along the direction 3 and 2. On  consisting of mutually perpendicular
the whole for the medium (Fig. 6.1) the Systems of homogeneous isotropic
following inequality series can be layers ~ with different elastic

characteristics.

formulated:
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Vin> V> Vi, Vo=V > Viz= V3 > 1
Va3 = V. (6.1)

The ratios (6.1) represent only one P
version of element orientation for the
rthombic medium elastic symmetry. If the
measurements result in revelation of other ‘ 2
inequalities between the values of Vj; then
the spatial location of the planes with
higher and weaker anisotropy will be 3 /
different [Gorbatsevich, 1995]. d

From the ratios (6.1) the inequality
systems for velocities in transverse-
isotropic media can be easily deduced. For ~ Fig- 6.2. Model of thin-layered medium
the medium consisting of plane-parallel composed of ~homogeneous _ isotropic

. . . parallel layers with different elastic
layers (Fig. 6.2) the symmetry axis will . haracteristics
coincide with the direction 3. As is known,
in such a medium the least compression wave velocity will be observed in the
symmetry axis direction. On the whole, the velocity values will obey the following
ratios:

Vii=Vn>Vss, Vio=Vy =Viz=V31 > V3=V, (6.2)

It should be borne in mind that another type of a transverse-isotropic medium
may occur. It is represented by a system of isometric parallel to each other rods
penetrating homogeneous material (Fig. 6.3).

In this case the greatest
compression wave velocity will be 1
observed in the direction coinciding
with the rods' axes. In the same
direction the medium symmetry axis
will run. For such a medium the
inequality system will appear the
following way:

Vii=Vu<Vi, Vip=Vy <Viz= V3
= V23 = V32. (63)

This type of transverse-isotropic
symmetry occurred in amphibole-
lI;eoarrelﬁ(%ler(i)riliieoé 6‘[{176 7Kk(r)ila desggleigflg Fig. 6.3. Model of th_g medium composed

. B ) of a system of quasi-isometric parallel to
[Gorbatsevich, 1995]. This type of each other rods penetrating
symmetry is likely to result from homogeneous material.
metasomatic processes.

By the measurement results the ratios (6.1)-(6.3) allow one to determine the
elements spatial location of orthorhombic and transverse-isotropic media. The
acoustopolariscopy results should show the presence of elastic anisotropy for all the
three pairs of faces in the sample of orthorhombic symmetry and for the two pairs of
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faces in the sample of transverse-isotropic symmetry. It is worth noting that the ratios
(6.2, 6.3) for transverse-isotropic symmetry media and (6.1) for the rhombic
symmetry media should be strictly met for homogeneous fine-grained rock varieties.
For substantially heterogeneous or coarse-grained rocks the ratios between the elastic
wave velocities will reflect the natural scatter of their characteristics.

As follows from the above, determination of the medium symmetry type by the
presented method is carried out by two
independent ways: with acoustopolarigrams : /
analysis and by velocity ratios in quasimatrix
Vij (5.5). 103

After determination of the symmetry
elements number and type, their location and
corresponding reorientation, three additional
pads parallel to each other may be formed on 203
the sample. Through those pads the values of
Viees Vies,, Vaos, are measured (Fig. 6.4).
These values along with the values 3
constituting the Vj; quasimatrix and the rock
density value of p are necessary and Fig. 6.4. Sample for determining
sufficient for determining a full set of elasticity constants of orthotropic
elasticity constants for orthorhombic media media (iregular dodecahedron).
and media of higher symmetry types.

6.3. Calculation of elasticity constants for orthorhombic media and media of
higher symmetry type

Let us consider a medium of orthorhombic symmetry as an initial one since from
the equation system for calculation of elasticity constants of this symmetry medium,
with the presence of some equalities, one can determine the constants of tetragonal,
hexagonal and other symmetry types. A set of 9 independent constants meet an
orthorhombic system of elastic symmetry [Belikov et al., 1970]

Cwll QZ C13 0 0 0
C, C, CGo 0 0 0
w§STLLL e
44
0 0 0 0 C, O
0O 0 0 0 0 C,

In this matrix Ci» = Cyy, C13 = C31, Cz3 = Cxy.

After all 9 elastic rigidity constants C,s of a rhombic symmetry medium have
been determined one can calculate elastic compliance values S5 or technical moduli
using the known ratios [Belikov et al., 1970; Gorbatsevich, 1995]. The constants C,p
calculation for a rhombic symmetry medium can be performed with the following
equations [Urupov & Lapin, 1972; Nevsky, 1974]:

Cii=p(V11), Co=p(Vn), Cu=p(Vs),

55



Cu= p(V3), Css= p(Vi3), Ces= p(V12)" (6.5)

In this case among the V;; values the inequality V11 > V2, > V33 should be met.
The constant Cj, can be calculated from the expression [Urupov & Lapin, 1972];

1 E——
C12 Flz _Fz2 _C66 > (6-6)

" sin 20,

where F, =2pV 5, =(C,, +Cqs) = (C,, =Cy )sin® 6,
F, =C,, =Cgs —sin” 6,(C,, +Cp, —2C).

In the last-mentioned expressions & is the angle between the normal to the equal
phase front and the plane of the weaker anisotropy of the orthotropic medium. The
calculation of the angle 4, is performed from the direction in which V>, has been
measured along the plane of stronger anisotropy passing through the directions in

which the values of Vi, and V>, have been measured. If the angle 4, is equal to 45°
then the equation (6.6) appears more compact:

1 1
G, = \/[szI%)Z _E(Cn +Gy) - C66]2 - Z(Cn - sz)2 = G- (6.7)

To determine C,3 one can use the formula [Urupov & Lapin, 1972]:

1 [
C13 Fl2 _F22 _Css > (6-8)

B sin26,

where F, =2pV2, —(Cy, +Cy)—(C,, —Cy;)sin’ 6,
F, =C,;; —Cg —sin’ 0,(C,, +Cy; —2C).
The angle 6 is calculated from the direction in which the V33 value has been

measured in the weaker anisotropy plane passing through the directions in which V7,
and V33 have been measured. With @, = 45° the equation will take the form:

1 1
G, = \/[2/)[/1%)3 _E(Cn +Cy) — C’55]2 _Z(Cn - C33)2 -GCss (6.9)

To determine the constant C»; one can use the formula [Urupov & Lapin, 1972]:

C23 1 \JFl2 _Fz2 _C44> (6-10)

" sin 20,

where F, =2V, —(Cy3 +Cy ) =(Cp, —Cyy)sin® 65,
F, =Cy, = C,y —sin” 6,(C,, +C5; =2Cy,).

56



The angle & is calculated from the direction, in which V33 has been measured in
the weaker anisotropy plane passing through the directions, in which V>, and V33 have
been measured.

As follows from the formulae (6.4-6.10), to calculate all 9 constants of a rhombic
symmetry medium, in addition to the values of Vj;, given in the matrix form (5.5), it is
necessary to determine the values of compression wave phase velocity Vi, Vo3 and
V203 in the directions forming the angles 6, 6 and & to the weak and strong
symmetry planes. The values of Vg, Vies, V203 can be determined if we form three
additional pads parallel to each other in such a way that the normals to them are
directions (102), (103) and (203) as Fig. 6.4 shows. The calculations of Cj,, Cj3, Co3
are greatly simplified if directions (102), (103) and (203) form the angles &, = &, = &
= 45° to the medium symmetry elements.

The measurements of Vip, Vies, Va0 should be performed considering the
requirements set forth in chapters 4 and 6, i.e. the phase velocity of the wave front
propagation should be measured. One should also take into account that it is not
known in advance how elastic symmetry elements and, in particular, weaker and
stronger symmetry planes are arranged in the sample. But, as has been mentioned
above, to calculate the constants C, one should know the arrangement of the medium
elastic symmetry elements relative to the faces or directions in the sample. Therefore
to define the type of elastic symmetry elements it is necessary to use the analysing
procedure for acoustopolarigrams and matrices Vj; (5.5). The purpose of this analysis
is to divide media of rhombic, tetragonal, hexagonal and cubic symmetry
[Gorbatsevich, 1995].

The medium being analysed belongs to the orthorhombic system only when all
the 9 constants are represented by substantial values that are not equal to zero and to
each other. But the calculation results may reveal an equality or a relationship
between individual constants.

A particular view of such inequalities or relationships allows to diagnose other
simpler (higher) systems of elastic symmetry.

If the constants Ci; = Cy, Caa = Css, C13 = Ca3, but C33, C2 and Ceg are not equal
to each other, then the medium has tetragonal symmetry (symmetry classes 422, 4mm,
4/mmm, 42m). A total number of independent constants is equal to 6.

If the constants C11 = sz, C13 = C23, C44 = C55, Clz = C11 - 2C66 are not equal to
each other, the medium is transverse-isotropic. The number of independent constants
is equal to 5.

If C11 = sz = C33, C44 = C55 = C66, C12 = C13 = C23, the medium is a cubic
symmetry. The number of constants is equal to 3.

If C11 = C22 = C33, C44 = C55 = C66 = (Cll - Clz)/z, C12 = C13 = C23, the medium
is isotropic. The number of independent constants is equal to 2.

Elastic symmetry of crystalline rocks, probably, is not exhausted by the above
systems. More complicated (low symmetry) than orthorhombic media are described
by the number of the constants more than 9. The way of their determination has not
been determined yet due to complex relations between elastic wave velocities and
elasticity constants. A rock may be assigned to complex systems (trigonal, monoclinal
or tetragonal) if more than two symmetry elements, their non-orthogonality, have
been revealed by acoustopolariscopy in a medium section. An identification of the
elastic symmetry class of such media may be performed by the search of a similarity
with the corresponding class of the crystal symmetry. The example showing this
possibility is given in Fig. 6.5.
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One should take into account that elastic wave velocities in heterogeneous
polycrystalline rocks absorbing elastic waves, as a rule, experimentally, cannot be
precisely defined even with sophisticated measuring equipment. The obstacle for this
is, first of all, heterogeneity - variations in composition and structure of such a
medium. Moreover, the lower is the medium symmetry class, the higher is the
uncertainty when calculating its constants. Therefore, the determined constants and
class of elastic symmetry of some geological singularity should be corroborated by
parallel measurements on other samples. First, we should consider the peculiarities of
the media of pseudohexagonal and rhombic symmetries that are complicated ones.

6.4. Criteria for identification of weakly anisotropic media

A large number of observations performed on the samples [Belikov et.al., 1970;
Reference book, 1975; Physical..., 1988; Petrophysics, 1992], as well as by the
seismic methods in extended geological bodies [Chesnokov, 1977; Hess, 1964; Raitt
et al., 1969] showed that weakly anisotropic rocks
prevail. The paper [Thomsen, 1986] dedicated to
weak anisotropy presents evidence that weakly
anisotropic and transverse-isotropic media occur
most frequently among sedimentary rocks. The
paper shows that the angle dependence of V), Vi
and V,; cannot be described by a function
representing a comparatively simple figure, for
instance, ellipse. M.V.Nevsky [1974] has considered
a special criterion that enables to divide media into
weakly and highly anisotropic. When elastic waves
propagate through thin-layered media one can Fig 6.5. Acoustopolarigram of
observe loops (lacunas) on the circle indicatrix of quartz monocrystal (trigonal
the shear wave velocity Vi, (with the polarization syngony), obtained in the
vector in the plane passing through the symmetry fﬁfg‘%’:deee;)fgnd'cmar to the
axis), 1f thg maximum value of stmax. at some point g 4o parallel vectors,
of the indicatrix exceeds 1.13-1.14 times the value  yotted line - crossed vectors.
of V,, measured in the layers direction. The presence
of loops means that in one and the same direction
four various shear wave velocities can be detected. Note that only for one of them the
polarization vector lies in the medium symmetry plane. M.Musgrave and M.Markham
observed such splitting of a shear wave pulse in zinc crystals [Musgrave & Markham,
1961]. The absence of loops on the circle indicatrixes of the velocity may be one of
the main signs of a weakly anisotropic medium.

If the conditions, defining the medium belonging to transverse-isotropic or
weakly anisotropic ones, have been met, the indicatrixes of the wave velocity may be
calculated with the simplified equations suggested by L.Thomsen [1986]. According
to this work, a medium is weakly anisotropic if the factors

&= (Vn *V33)/V33 < 0.2, Y= (V23 *Vlz)/Vlz < 0.2, K= (VS102 *Vlz)/Vlz <0.12. (61 1)

In the last-mentioned inequalities the indexing given in the matrix Vj; has been
used (5.5). The value of Vjp, is determined in direction 102 (Fig. 6.4) so that the
polarization vector of shear waves is oriented in the plane passing through the
medium symmetry axis.
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Following V.S. Seleznyov et al. [1986], a simplified way for calculation of the
transverse-isotropic medium constants is suggested. The criteria that allow to assign a
medium to weakly isotropic are inequalities similar to the above: £<0.13, < 0.20, x
< 0.13. As test examples showed, the application of the simplified calculation with
these inequalities being observed may result in an error not exceeding 3-4%
[Seleznyov, 1986; Thomsen, 1986].

Thus, the review of the known works allows one to consider the following criteria
of weakly to average anisotropic media to be close to universally recognized:

&= (V11 —V33)/V33 < 015, ]/: (V23 —Vlz)/Vlz < 02, K= (Vs102 —Vlz)/Vlz < 013 (612)

Similar criteria can be applied to an anisotropy assessment of more complicated
media than transverse-isotropic. For instance, for an orthorhombic medium the
number of such criteria rises to 9. Except for the assessment of the weak anisotropy
degree by the indexes & yand x; the necessity of determining the anisotropy medium
factor arises. The factor characterizes the anisotropy degree of a medium as a whole.

6.5. Integral assessment of elastic anisotropy in crystalline rocks

The recording of elastic wave velocities in quasimatrix Vj; form suggested by us
(5.5) covers 9 values. The quasimatrix diagonal terms V), V» and Vi3 are
compression wave velocity values and the terms V,, Vi3 are shear wave velocity
values measured on the sample's first side, V>, and V>3 - on the second and V3; and
V35 - on the third side. If the indicated values have been determined along the sample
elastic symmetry elements they take, accordingly, the greatest and the least, i.e.
extreme values. Naturally, the comparison of, for instance, V1, and Va,, or Vi, and Vi3
for determining the anisotropy index of the rock as a whole is not sufficient. A general
index of the rock elastic anisotropy for compression waves should take into account
the distinction of all the V7, V2, and Vi3 values from one another. Respectively, the
anisotropy generalized index for the shear waves measured values should take into
account the Vi,, Vis, Va1, Vas, V31 and Vs, values.

First, we shall consider a possibility of presenting the anisotropy generalized
index for compression waves through the quasimatrix diagonal terms (5.5), i.e.
through Vi1, V2, and V33. In crystalline metamorphosed rocks the difference between
the Vi terms is most often caused by palaeostresses long influence resulting in
rearrangement of their mineral composition and structure [Brace, 1960; Kozhevnikov,
1982]. From the elasticity theory [Bezukhov, 1968] it is known that the sum of ;. =
O11, Om= On2, Omin= 033 values or, to put it otherwise, the sum of o1; + 022 + 033 1s an
invariant, i.e. it does not change when three mutually perpendicular directions, along
which the values are determined, rotate in space. In accordance with the accepted
conditions relating to proportionality of the measured velocities to the palaeostress
values (2) and (3), the sum of V;; + Vo + V33 with some assumptions, may be
considered to be invariant in regard to mutually perpendicular directions along which
they have been determined. Such determinations can be performed, for instance on a
cubic sample.

By the expression

Vav = (V11 + V22 + V33)/3 (613)
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we calculate an average velocity of compression waves in an anisotropic sample. The
value of V,, may be considered to be equivalent to the quasimatrix spherical tensor
(5.5). Using this value one may introduce a characteristic that reflects the anisotropy
degree of the sample as a whole. Such a characteristic (let us call it intensity or
anisotropy generalized factor for compression waves) can be determined as the sum of
standard deviations of individual V;; values from V,,:

1
Ay = N Vo) + V=V 4 (Vs =V,) (6.14)

The assessment made by formula (6.14) is also important because it coincides in
shape with the deviator expression for the stress tensor in a solid body and may be
invariant relative to the variation in the co-ordinates direction [Bezukhov, 1968]. If
the anisotropy generalized factor in respect to the elasticity constants is supposed to
be applied then it should be transformed into:

1
A= O =VoY + 05 =V + V=V (6.15)

In this expression of the anisotropy factor A4, it is taken into account that when
calculating the elasticity constants the velocity values are squared (see (6.5)-(6.10).
K.S.Alexandrov & G.T.Prodaivoda [2000] have suggested anisotropy factors
reflecting the distinction of the medium of a certain symmetry type from an isotropic
body.

Now let us consider the quasimatrix terms (5.5) composed of shear wave
velocities. Previously it was conventional to evaluate the anisotropy degree for every
side of a cubic sample through the birefringence factor [Clark et al., 1983;
Gorbatsevich, 1995]. For instance, the shear wave birefringence factor determined for
the first side is equal to

_ 2(V12 B V13)

SV +Ty) (10

1

Similarly the factors for the second and third sides of the sample are determined:

2 —
) J 20 = Va), (6.17)
(VZI + V23)
2V, — V.
3: ( 31 32)' (6.18)
(V31 + V32)

Let us determine the generalized factor for shear waves:

B, =+B} +B; +B; . (6.19)

It should be noted that for a large number of rocks the anisotropy factors will
most likely be evaluating ones, since anisotropic crystalline rocks, as a rule, are
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heterogeneous in their elastic properties. It is impossible to evaluate their
heterogeneity degree a priori in every specific case. On the other hand, a strict
approach requires that the directions along which the values of Vj; are measured be
close to the directions along which the elastic symmetry elements pass. To use the
expressions (6.13-6.19) correctly it is necessary that the symmetry of the medium
being evaluated is not lower than an orthorhombic one.
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7. ACOUSTOPOLARISCOPY OF SOME ROCK FORMING MINERALS
7.1. Peculiarities of elastic properties of rock forming minerals

As is known, mineralogists have at their disposal a splendid reference book (in
terms of data completeness) on mineral optic properties by W.E. Troger [1959]. As to
mineral elastic properties, such a reference book has not been created yet. To our
mind, the reason for that is insufficient development of experimental equipment.
Elastic properties of the lowest symmetry minerals are described by a tensor of the
fourth order. This arises considerable complexity when analysing results of
experimental observations. It is also known that mineral optic properties are described
by a tensor of not higher than the second order. At the same time, elastic properties of
ore forming minerals have great influence on some natural processes. With the advent
of a new investigation method - acoustopolariscopy [Gorbatsevich, 1995] an actual
possibility of creating a reference book similar to that by W.E. Troger has appeared.
The reference book might have included the data on fine peculiarities of elastic
properties of rock-forming minerals.

The study of formation regularities of elastic-anisotropic properties and non-
elastic effects of minerals and mineral formations is a basic scientific problem. This
problem is related to the problem of thermodynamic balance of a mineral grain in a
paragenetic ensemble of other grains in a crystalline rock during metamorphic
transformations [Saxena, 1973]. For instance, the existing method of dynamic
analysis of orientation of palaeostress field components during metamorphic
processes is based on the study of oriented arrangement of crystallographic and more
often optic axes in minerals. That is the essence of the microstructural method.
Recently on the basis of this and other methods it has been established that elastic-
anisotropic properties of mineral grains make the greatest impact on the orientation of
the grains' crystallographic axes [Brace, 1960; Kozhevnikov, 1982; Kazakov, 1987].
Their orientation is also subject to the principle of free energy minimum, which is a
consequence of the theorem of the change in thermodynamic potential of an
anisotropic body in the field of mechanical stresses. As applied to mineral grains of a
polymineral rock it is formulated in the following way: in greatly deformed rocks the
direction, in which the constant value of mineral compliance is maximum, turns out to
be in the direction of the greatest component of the palaeostress field [Delitsyn,
1985].

There are some minerals (biotite, phlogopite, muskovite etc.) in which the
orientation of crystallographic and elastic symmetry axes is very close or coincides. In
other minerals (quartz, calcite, diopside, amphibole, plagioclase etc.) the orientation
of crystallographic axes may diverge from the orientation of elastic symmetry axes
and respectively from the spatial location of the elasticity modulus greatest (least)
value [Brace, 1960; Kazakov, 1987; Alexandrov & Prodaivoda, 2000].

What is more, the angles between peculiar orientations and crystallographic axes
depend on the mineral modification and its composition. Peculiar orientations are
those where Sgp (Cqp) values are extreme. For instance, for quartz of different
modifications («, f) these angles vary in the range of ~30° to ~70° [Brace, 1960;
Sobolev et al., 1964]. The same angles for amphiboles and plagioclases as well as
elasticity characteristics S5, Cqp depend on their composition [Kazakov, 1987].

At present information on orientation of elasticity axes and spatial location of the

greatest (least) values of elasticity modulus for a large number of rock forming
minerals are scarce. So we have carried out acoustopolariscopy of some widespread
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rock forming minerals. Below some initial results of this investigation are presented.
Certainly, this study has not approached solving the problem to the extent it has been
solved in W.E.Troger's book in relation to minerals optical properties. Our study is
the initial stage on this way.

7.2. Minerals of higher and medium syngony

As 1s known, mineral syngonies are subdivided into three categories: higher,
medium and lower [Geological dictionary, 1973]. The cubic syngony belongs to the
higher category that has the greatest number of elastic symmetry elements among
other homogeneous ordered anisotropic media. Hexagonal, tetragonal and triclinic
symmetry types pertain to anisotropic media of the medium category [Berry et al.,
1983].

As to cubic symmetry media we have performed acoustopolariscopy of minerals
analcite, garnet halite and pyrite (Fig. 7.1, Table 7.1). The same determinations have
been done for the group of minerals of medium syngony: apatite (hex.), nepheline
(hex.), tourmaline (trig.) and quartz (trig.) - see Table 7.2.

First we have taken mineral samples of the suitable size (no less than 10x10x10
mm?®) and quality (the lack of fractures, high homogeneity). The samples were made
in the form of a cube so that the main crystallographic axis of the crystal passed in 1-
1' direction, Fig. 5.1.

At the first stage
acoustopolariscopy of the samples
was  conducted at  parallel

[1] (1]
polarization vectors (VP position). @ @ @ I a

At the second stage the transducers'

. 2
polarization vectors were set at the [E] .EJ — L-]
right angle (VC position). For some
mineral samples acoustopolariscopy

was  performed at  different [1] [1]
frequencies. Accordingly, we have @ @

used the acoustopolariscopes in
which the transducers having [2] [3] [2]
natural frequencies of 0.78, 1.26 il
and 2.67 MHz were set. The
measurements were made on all the

1 1
three pairs of the cubic sample @ @ 1] [] c

sides. On each of the three pairs we
have measured the values of mutual [2] [3] [2]
angles between the projections of

symmetry elements (Table 7.1).
Then we have determined the | [1] [1]
LAAA index D (Table 7.2). @ @ '

! d

The acoustopolarigrams o [2] [3] (7]

mineral samples of cubic syngony, - = = -
Fig. 7.1, show that the shape of VP

diagrams i1s  rather  strongly

influenced by the crystal internal Fig. 7.1. Acoustopolarigrams of the mineral
defects. samples analcite (a), halite (b), garnet (c) and

The VC diagrams for pyrite pyrite (d).

—
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(Fig. 7.1d) allow one to distinguish the orientations of the symmetry elements
projections on all three sample sides. As for other mineral samples, distinguishing
these orientations presents a challenge due to the VC diagrams small size. But this can
be done if this determination is made
by the so-called reverse a
acoustopolarigrams (Fig. 7.2). The (1] (1
reverse acoustopolarigrams can be ® I ® ] ® |
obtained if in the process of ) ""::_“_ ] o B 0 2
acoustopolarization measurements all S S
amplitudes are normalized by the ¥
minimum amplitude received at the ] (7 b
ity @ | @ | ® |
crossed polarization vectors of the s o
source and receiver of shear waves. T B e .
On sides 1 and 2 of the analcite oo
sample the orientations of the
symmetry  elements  projections
passing through the maxima of the
reverse diagrams amplitudes can be distinguished rather easily (Fig. 7.2a).

The measurements of the angles between the symmetry elements projections,
presented in Table 7.1, have been performed by the reverse acoustopolarigrams.
These angles, for instance, for analcite at the frequencies f, = 1.67 and 2.67 MHz are
the averages of two measurements. The angles for pyrite presented in Table 7.1 are
the averages of three measurements. The absence of the data in some cells of Table
7.1 or their insufficient accuracy can be explained by heterogeneities and foreign
inclusions in the structure of natural mineral samples.

Fig.7.2. Reverse acoustopolarigrams for
analcite (a) and halite (b).

Table 7.1

Mutual angles between the projections of elastic symmetry elements in the samples of
some rock forming minerals of higher syngonies.

Ne | Mineral | Sample Syn- | Expe- | fo, Side 1 Side 2 Side 3
Ne gony | ri- MHz | ¢ 1o a . aj. .
ment
Ne
1 | Anal- An-98-1 | Cub. | 1,2 1.26 | 80 100 | 115 | ~65 | 85 95
cite
2 | Anal- An-98-1 | Cub. | 1,2 2.67 | ~107 | ~73 | 100 | ~80 | ~93 | ~87
cite
3 | Halite | Ga-1-5 Cub. |1 267 | ~95 ~85 | ~73 | 107 | 104 | 76
4 | Garnet Cub. |1 1.26 | - - ~90 [ ~90 | - -
5 | Pyrite P-001 Cub 1 078 |79 101 | 99 81 - -
6 | Pyrite P-001 Cub. | 1-3 2.67 | 82 98 92 88 86 | 94

Notes: a), o, are represented in degrees.

For all the samples of cubic syngony presented in Table 7.2 manifestations of the
LAAA effect are comparatively weak. The index D in analcite increases, on the
average, with the rise in the impact frequency.

At fo = 2.67 MHz frequency a plane type of LAAA is detected in the sample (see
point 2.4). Pyrite exhibits weak LAAA which can most likely be explained by an
imperfect crystal structure.
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The results of the determinations on the minerals of medium syngony - crystals of
apatite, nepheline, quartz and tourmaline are presented in Fig. 7.3-7.6 and Tables 7.3
and 7.4.

Table 7.2.

Linear acoustic anisotropic absorption indexes in the samples of some rock forming

minerals of cubic symmetry.

Ne No | Mineral Sample Syn- Expe- | /o, D, D, D; Notes
gony | ri- MHz
ment
Ne
1 Analcite An-98-1 | Cub. 1,2 126 | 0.10 | 0.055 | 0.074
2 Analcite An-98-1 | Cub. 1,2 2.67 | 0.06]0.022 | 030 | P2-3
3 Halite Ga-1-5 Cub. 1 267 1021]0.18 |0.070
4 Garnet G-1 Cub. 1 1.26 [ 0.13 ] 0.11 0.13
5 Pyrite P-001 Cub. 1 0.78 [0.14 | 0.076 | 0.048
6 Pyrite P-001 Cub. 1,2 2.67 | 0.06 | 0.043 | 0.030
Notes: P2-3 — LAAA plane of structural elements passes through the directions 2-2” and 3-3°,
see Fig. 5.1

The apatite crystal has been selected from the skarns of the Dashkesansky iron
ore deposit. It was a well cut crystal, formed by the combination of two hexagonal
prisms, hexagonal pyramids and a pinacoid. In the directions parallel to the sides
(0001) and (1010) weak hair-like microcracks of imperfect cleavage have been
detected in the crystal. The sample prepared for acoustopolariscopy was cut from the
crystal central part in the shape of a rectangle prism with a 12x12 mm base and 15 mm
edge oriented parallel to the crystallographic axis L6 in apatite.

Acoustopolariscopy of apatite samples was performed several times and at
various frequencies, see Tables 7.3 and 7.4, Fig. 7.3 and 7.4. The sample A-1 diagram
for the first side was obtained in the axis direction [0001], Fig. 7.3a. As follows from
the reverse diagrams, Fig. 7.4, the projections of the elastic symmetry elements are at
a right angle. They are virtually normal to the sample sides. In the direction 3-3', on
the diagram obtained at the frequency 1.26 MHz (Fig. 7.4a), the projections of the
elastic symmetry elements are not practically conspicuous. But for the sample A-1-3,
whose diagrams were obtained at 2.67 MHz frequency (Fig. 7.3b), revealing the
orientation of the projections of elastic symmetry elements presents no problems.

A comparison of Fig. 7.3a and 7.3b enables one to notice that the VC diagrams,
especially side 3 at a higher frequency, allow easier distinguishing of symmetry
elements orientation. At 2.67 MHz frequency the apatite sample exhibits an
orthorhombic symmetry type. An analysis of the data from Table 7.3 permits noticing
that the values of angles between the projections of elastic symmetry elements range
from 81° to 99° when their orientation is revealed with confidence. No frequency
dependence of these angles has been noticed.

In the apatite samples (Table 7.4) an essential manifestation of the LAAA effect
has not been detected. The maximum values of D do not exceed 0.14. At fo = 1.26
MHz in the sample A-1 a linear type of LAAA (L2) is detected as well as at f, = 2.67
MHz in the sample A-1-3 (L1). The nepheline sample (He-005, f, = 2.67 MHz),
whose acoustopolarigrams are presented in Fig. 7.3c, is virtually a transverse-
isotropic medium. Its symmetry axis passes along the normal to side 2. The reverse
acoustopolarigram allows clear-cut detecting of elastic symmetry elements projections
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on sides 1 and 3 (Fig. 7.4b). The mutual
angles between the elastic symmetry
elements in the nepheline samples are in
the range of 85-95° (Table 7.3).

In the nepheline samples (Table 7.4)
at low frequencies (fp = 0.78-1.26 MHz)
the LAAA index may reach medium and
high values. For instance, the maximum
values of D are 0.25-0.62. In nepheline a
linear type of LAAA has been registered
at fo = 0.78 MHz frequency (samples He-
005, He-008) and a plane type at fo =
1.26 MHz frequency (sample He-008),
the plane passing through sides 1 and 3.

In the acoustopolarigrams of the
tourmaline sample P-011 (Fig. 7.3d,
7.4c) a simultaneous manifestation of
two effects - LAAA and depolarization
of shear waves (DSW) has been
registered. The LAAA effect is mainly
registered on sides 1 and 3. At fp = 1.26
MHz the sample shows a linear (L2)
type of LAAA (Table 7.4).
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Fig. 7.3. Acoustopolarigrams for: apatite at
1.26 MHz (a), apatite at 2.67 MHz (b),
nepheline (c) and tourmaline (d).

At fo = 2.67 MHz a combination of linear and plane types is exhibited where
elongated elements of the media are oriented along side 2 and the plane passes
through sides 1 and 2. The DSW effect is most conspicuous on side 2. It means that in
the planes parallel to side 2 a fan pattern of the medium structural elements
arrangement is observed in the tourmaline sample (see points 3.1 and 3.2).

Table 7.3.

Mutual angles between the projections of elastic symmetry elements in the samples of
some rock forming minerals of medium syngonies.

Ne | Mineral Sample | Syn- | Expe- | Fre- Side 1 Side 2 Side 3
Ne gony | ri- qu- o o)) o 107 o (o)
ment ency,
Ne MHz
1 | Apatite A-1 Hex. 1,2 1.26 85 95 90 90 91 89
2 | Apatite A-1 Hex. 1 2.67 96 84 91 89 103 | ~77
3 | Apatite A-1-3 Hex 1 0.78 94 86 81 99 ~76 | 104
4 | Apatite A-1-3 Hex. 1,2 2.67 93 87 90 90 90 90
5 | Apatite A-006 Hex. 1 2.67 97 83 93 87 ~94 | ~86
6 | Nepheline He-3 Hex. 1,2 2.67 90 90 - - 85 95
7 | Nepheline He-005 | Hex. 1 0.78 89 91 99 81 100 | ~80
8 | Nepheline He-005 | Hex. 1 2.67 89 91 - - 93 87
9 | Nepheline He-008 | Hex. 1 0.78 90 90 86 94 90 90
10 | Nepheline He-008 | Hex. 1,2 1.26 103 | ~77 |95 85 89 91
11 | Tourmaline P-011 Trig. 1,2 2.67 86 94 - - 98 82

Notes: a), o, are represented in degrees.
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It is worth noting that
tourmaline exhibits strong
pleochroism in optics as well. The
symmetry  elements in  the
tourmaline sample are detected
only on sides 1 and 3. Their mutual
angles are in the range of 82-98°
(Table 7.3).

The acoustopolariscopy of a
quartz synthetic sample (sample
Qu-11) was performed most
thoroughly, the procedure and
defining the arrangement of elastic
symmetry elements with respect to
the sample crystallographic axis
[0001] being performed 4 times.
The quartz sample prepared for
measurements had the shape of a
cube with a 4 ¢m edge. It has been

e

(]

Th
Y-t

Fig.7.4. Reverse acoustopolarigrams for apatite

(a), nepheline (b) and tourmaline (c).

cut so that its crystallographic axis [0001] is perpendicular to side 1 and, accordingly,
parallel to the direction 1-1' with a precision of £1° (Fig. 7.5a).

Table

7.4.

Indexes of linear acoustic anisotropic absorption in the samples of some rock forming

minerals of medium syngonies.

Ne | Mineral Sample | Syn- Ex- Fre- D, D, Ds Notes
Ne gony | peri- quen-
ment cy,
Ne MHz
1 Apatite A-1 Hex.. | 1,2 1.26 0.045 | 0.01 0.08 L2
2 | Apatite A-1-3 Hex. 1 0.78 0.020 | 0.029 | 0.10
3 | Apatite A-1-3 Hex. 1,2 2.67 0.032 | 0.09 0.033 | L1
4 | Apatite A-006 Hex. 1 2.67 0.04 0.14 0.10
5 | Nepheline He-3 Hex. 1 2.67 0.021 | 0.00 0.00
6 | Nepheline He-005 | Hex. 1 0.78 0.038 | 0.25 0.32 L1
7 | Nepheline He-005 | Hex. 1 2.67 0.048 | 0.00 0.022
8 | Nepheline He-008 | Hex. 1 0.78 0.10 0.072 | 0.14 L2
9 | Nepheline He-008 | Hex. 1,2 1.26 0.072 | 0.18 0.62 P1-3
10 | Quartz Qu-11 Trig. 3,4 0.6 0.00 0.14 0.06
11 | Quartz Qu-11 Trig. 1,2 1.2 0.00 0.04 0.36
12 | Tourmaline | P-011 Trig. 1,2 1.26 0.23 0.06 0.59 L2
13 | Tourmaline | P-011 Trig. 1,2 2.67 0.52 0.14 0.54 L2, P1-2

the effect is exhibited, see Fig. 5.1

Note: L - linear, P - plane type of LAAA manifestation; directions 1-1°, 2-2°, 3-3” along which
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Fig. 7.5. Orientation of elastic symmetry elements in the synthetic quartz sample
according to the acoustopolariscopy data (a) and schematic formation of
complementary sides along the normal to directions 301 and 103 (b).

Figure 7.6 shows the acoustopolarigrams of four successive determinations
obtained in the cube's three mutually perpendicular directions 1-1', 2-2°, 3-3°. The
acoustopolarigrams (Fig. 7.6a, 7.6b, Table 7.5, measurement numbers 1 and 2) were
obtained with the recording device UD-2-12, whose amplifier has a resonance
frequency of 1.2 MHz and device DUK-66 PM, with a frequency of 0.6 MHz (Fig.
7.6¢, 7.6d, Table 7.5, measurement numbers 3 and 4).

In the direction 1-1' with parallel polarization vectors (VP position) three petal

acoustopolarigrams were obtained. The
maximum amplitude in each petal was
registered in the directions coinciding with
the position of the elastic symmetry planes
passing through the axis [0001]. With the
crossed polarization vectors (VC position)
the diagrams with 6 petals were obtained.

The results of the measurements of the
VC minima angular locations regarding the
orientation of the sample sides are presented
in Fig. 7.5. In the direction 2-2' VP
acoustopolarigrams represent a four-petal
figure that is typical of media with two
crossing symmetry elements. The VC
diagrams testify that.

The position of minima in the VC
diagrams shows that the crystallographic axis
(direction 1-1') and elastic symmetry
elements form a certain angle (Table 7.5).
The VP acoustopolarigram obtained in the
direction 3-3' indicates a rather complicated
nature of propagation of polarized shear
waves in the elastic-anisotropic medium of

Fig.7.6. Acoustopolarigrams of the
synthetic quartz cubic sample obtained
at fp =1.2 MHz (a, b) and f, =0.6 MHz
(c, d) frequencies.

the sample. However, by the VC diagram minima one may single out a spatial
orientation of elastic symmetry two elements which arrangement is close to the
orientation of the crystallographic axis (direction 1-1') and the axis perpendicular to

the crystallographic one (Table 7.5).
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The data from Table 7.5 also show that the arrangement of the symmetry
individual elements vary from measurement to measurement by two and more degrees
with regard to successive removing and a new setting the sample on the
acoustopolariscopy tables. In this case the operation of the device with another
resonance frequency of the amplifier affects the outlines of the VC and VP
acoustopolarigrams. However, the position of the VC minima in relation to the
directions 1-1', 2-2' and 3-3', as a whole, remains stable. Judging by the medium

values from the set of measurements ¢, — @, on acoustopolarigrams, one of the quartz
planes of the elastic symmetry along the direction 1-1' forms an angle ¢/ = 30°, the
other - @) = 144° and the third ¢! = 266° with the direction 2-2'. Their mutual
angles are 6y = @, —p, = 144°%; = @l — @, = 122°% 6= @/ — . = 124°,

On side 2 the average inclination angle of a symmetry element is ¢;, =56° and
@, =150° with the direction 3-3'. Respectively, the discrepancy with the
crystallographic axis [0001] orientation of these elements is ., =34" and
wi_, =60°. From the measurements on side 3 we obtain the angles ¢, , =5° and
@, , =96°. The discrepancy with the axis [001] orientation is, accordingly,
w,, =85" and y; , =6". In Fig.7.5a the elastic symmetry elements are removed on
the sample sides. The Figure shows the spatial discrepancy between the axis [001]

orientation and elastic symmetry elements.

At the next stage we measured phase velocities V), and V along the directions 1-
1', 2-2', 3-3" according to the diagram in Fig.7.5a. For this purpose additional parallel
to each other and perpendicular to the directions [301] and [103'] sides were formed
as shown in Fig.7.5b. The measured V), and V are given in Table 7.5. Using these

data, in the plane of side 2 V), V§, and V, indicatrixes (Fig.7.7) were built with the
polarization vector parallel and perpendicular to plane 2 accordingly.

According to Table 7.5 and Fig. 7.5b the direction [301], in which the value
Vomax = 7.07 km/s has been measured, makes an angle of 60° with the axis [0001]. It is
well known that the elasticity modulus (constant) [Bezukhov, 1968]

Co=pL(Vpp) (7.1)

where p is density, Vzp(p is phase velocity.

Thus, the modulus (constant) of longitudinal elasticity in the direction [301] takes
the maximum value. The direction [301] does not coincide with the crystallographic
axis [0001] orientation. That is the reason for an angular divergence between the
palaeostress orientation and the axis [0001] in the quartz grains of a metamorphosed
rock [Kozhevnikov, 1982; Gorbatsevich & Basalayev, 1993].

We should note that the direction 3-3' in which the minimum value V= 5.78
km/s was detected is not perpendicular to the direction [301]. The maximum value V|

=4.89 km/s is in the direction [103'] and the minimum value V;;, = 3.26 km/s is in the
direction [301]. The values Vs, contrast in different directions is not great, it is in the
range of V, = V21 = 4.33 km/s (direction 1-1") to V, = Vo3 = 3.23 km/s.
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Table 7.5.

Determined arrangement of symmetry elements in the sample of synthetic quartz.

Mea-
sure- Side 1, angle Side 2, angle Side 3, angle
ment
Ne

o | o |os |os |0 |o o o |0 |o | | |
1 39 79 149 (209 (269 |319 |54 144 |244 (324 |3 103 | 183 (283
2 43 83 153 203 |[273 |323 [58 148 [238 |318 |5 105 195 |265
3 17 87 137 207 [262 [327 |50 150 |230 ([330 |5 90 [190 |275
4 21 81 136 201 [261 |331 |60 160 235 (330 |7 87 177 |263
Ave- |30 82 144 205 [266 |325 |56 150 237 |[326 |5 96 186 |[271
rage
K, [7.1 1.6 |47 (20 |32 (29 |25 [40 |32 |32 |[10 |50 (44 |52
%
Vs, 433 1430 [4.33 |4.31 [4.33 |430 [4.89 [3.26 |4.81 [3.25 |3.64 |4.00 |3.64 |[4.09

Note: Vp: V]] = 632, V30] = 707, V22: 577, V103 = 626, V33 =5.78 km/s
VS: V12 = 432, V13: 430, V21 = 433, V23 = 364, V31 = 400, V32: 3.64 km/s

The obtained indicatrix (Fig. 7.7) on the whole, is similar to the sections of the

phase V), surface by the plane (Table 7.5). Like data have been published before
[Silayeva & Delitsyn, 1970; Farnell, 1961].

Thus, the acoustopolariscopy of synthetic quartz in the direction of the triple

crystallographic axis fixes the projections of the three symmetry planes (VC diagram)
that are turned relative to each other by an angle of 60°. The arrangement of these

planes can be determined with a
comparatively high precision, as follows
from Fig. 7.6a.

The data presented in Fig. 7.6 and Table
7.5 show that the acoustopolariscopy method
allows determining the spatial orientation of
elastic symmetry elements in a mineral
without measuring ¥, and V. The obtained
Vi values, as a whole, agree with the re-
counted data from the reference books
[Belikov et al., 1970; Aleksandrov and
Prodaivoda, 2000]. But the constant values of
quartz elasticity in the reference books have
been measured along the crystallographic
axes and do not reflect the greatest and least
elasticity values for this mineral. The quartz
sample (Fig. 7.5), judging by the D values,
exhibits a comparatively low degree of
LAAA. The LAAA degree depends on the
sounding vibration frequency. As indicated
above, the nepheline index D 1is also
frequency dependent.
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Fig. 7.7. Indicatrix of Vs in the quartz
plane 2-2": 1 - V,, 2 - V, with the
polarization vector along the normal to

the plane 2-2'

3 -

Vso with the

polarization vector in the plane 2-2'.
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7.3. Minerals of lower syngonies

The lower syngony category comprises media of orthorhombic, monoclinic and
triclinic symmetry systems. Figure 7.8 gives acoustopolarigrams for aragonite
(rthomb.), staurolite (rhomb.), diopside (mon.) and amphibole (mon.). The aragonite
crystal prepared for tests (sample X2-7, fo = 0.78 MHz) has a hair-like structure and
perfect cleavage. The acoustopolarigrams point, as a rule, to the LAAA presence and
heterogeneous structure of the samples at our disposal. In the sample X2-7 a great
manifestation of the LAAA effect was detected on sides 2 and 3, Fig. 7.8a. The
reverse acoustopolarigrams of the same sample (Fig. 7.9) enable one to determine the
symmetry elements arrangement on sides 2 and 3 rather precisely. The mutual angles
between those elements, according to a number of determinations, are in the range of
82-98° (Table 7.6). Unlike the sample
X2-7, the LAAA degree in the sample 1 [1] a
X2-11 is much lower (Table 7.7). The
data from Table 7.7 indicate that [23 ‘ [ ’ ' [2]
aragonite exhibits both linear and plane
types of LAAA.

The staurolite (sample St-1-1), b
whose acoustopolarigrams were obtained @ |[1] @ (1]
at fo = 1.26 MHz (Fig. 7.8b) has a rather 2|]
homogeneous structure. The orientation [2 .[3] ‘ ‘[23
of symmetry elements is clearly seen in
its all three reverse acoustopolarigrams
(Fig. 7.9b). The mutual angles between [1] @ (1]

the elements on side 1 are 85° and 95°,
on other sides they do not virtually differ [2'] ” [3] [2]
from a right angle (Table 7.6).

The sample St-1-1 exhibits a
relatively low degree of LAAA of a

1 1
plfltpeh ty}[l)e %Table g.7). The Plang along @ I @ II: ] @ li:] d
which the least absorption is observe (2] 3] [
Ea¥ e-onb

passes through directions 2 and 3. As is
well known, staurolite is characterized
by a total absence of cleavage (Troger,  Fig. 7.8. Acoustopolarigrams of aragonite (a),
1959) and this is the reason for a low  staurolite (b), diopside (c) and amphibole (d).
degree of LAAA manifestation in it.

The acoustopolariscopy of a
diopside crystal (sample D-009, fo = 2.67 MHz) shows a much more intricate type of
elastic anisotropy (Fig. 7.8c). If the first two directions (along the normal to sides 1
and 2) point to the presence of two symmetry elements forming virtually a right angle,
the third side in the VC diagram shows three projections of the elements that form
mutual angles of 83, 56 and 41° (Table 7.6). The symmetry elements orientation on
the third side was determined at f, = 2.67 MHz. At f;, = 1.26 MHz we failed to do that.
The mutual angles between the symmetry elements on the first side may not differ
from a right angle, but on the second side their values are 64-80° and 100-116°.

Diopside showed dependence of the LAAA effect on the vibration frequency
(Table 7.7). At fo = 1.26 MHz the LAAA index measured on sides 2 and 3 is more
than twice higher than that at f, =2.67 MHz. As the frequency increases the plane
LAAA of the P2-3 type goes over into linear L1.
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The acoustopolariscopy results
(sample A-030) for amphibole
(arfvedsonite) are given in Fig. 7.8d
and Tables 7.6 and 7.7. The
acoustopolarigrams were obtained at
fo = 0.78, 1.26 and 2.67 MHz. The
tests at all those frequencies showed a
rather high manifestation of the
LAAA effect. The index D at fy =
1.26, 2.67 MHz at least at one side
reaches 0.8-0.9. As a rule, both linear
and plane LAAA manifest themselves
at the same time. Thus, it may be
concluded that the elements of the
mineral chain structure are not
isometric in the cross section.

The mutual angles of the
symmetry elements in an amphibole
crystal vary from 85 to 95°. No
dependence of these angles on the
vibration  frequency has been Fig. 7.9. Reverse acoustopolarigrams of
detected. aragonite (a), staurolite (b), nephrite (c) and

The nephrite sample Nefr-033 microcline (d).
prepared for the measurements was
rather homogeneous, it had no foreign inclusions. Respectively, the
acoustopolarigrams shape of this sample is rather close to the theoretically predicted
ones, Fig. 7.10a (see point 1.4). The remarkable homogeneity of the sample Nefr-033
is confirmed by the reverse acoustopolarigrams shape (Fig. 7.9¢). The mutual angles
between the symmetry elements on side 2 greatly differ from a right one and are 79-
101° (Table 7.6). This nephrite sample is characterized by the LAAA low degree
(Table 7.7) and combination of the linear and plane types of its manifestation (fy =
0.78 MHz). The sample Ne-3 has almost the same characteristics as Nefr-033. Despite
a high homogeneity of the samples Ne-3 and Nefr-033 they are most likely
monomineral and not monocrystalline formations.

Acoustopolarization measurements of orthoclase were performed on two
samples, at some frequencies being repeated 2 and 3 times (Tables 7.6 and 7.7). The
mutual angles between the symmetry elements in the sample O-15b at fy = 2.67 MHz
on all the three sides do not virtually differ from a right one. But at f; = 0.78 MHz on
side 1 of the same sample 78-102° angles have been detected. In the sample O-19b the
same angles have been registered on side 1 (f, = 0.78 MHz) and side 3 (fp = 0.78
MHz).

Orthoclase as well as amphibole exhibits the LAAA effect of a high grade,
especially at fo = 1.26 and 2.67 MHz (Fig. 7.10b, Table 7.7). A comparatively
identical degree of this effect is registered on both samples - O-015b and O-019b.

As a rule on these samples a combination of the LAAA plane and linear types is
observed. On the sample O-019b as the frequency increases a transition of directions
(in which the LAAA linear and plane types are registered) is observed. For instance,
at fo = 0.78 MHz the mineral linear structures that are oriented along the normal to the
first side have been revealed (Table 7.7). At fo = 1.26 MHz the mineral linear
structures oriented to the first side preserve their influence, but in this case the plane
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passing through directions 1-3 manifests itself. At fo = 2.67 MHz the linear structures
in direction 2 and the plane passing through directions 2 and 3 reveal themselves.

Table 7.6.

Mutual angles between the projections of elastic symmetry elements in rock forming
minerals of lower syngonies.

Expe- Mineral Sample Syn- | Fre- Side 1 Side 2 Side 3
riment gony | quen- | ¢ o o o o o
No cy,
MHz
1-3 Aragonite X2-7 Rho- | 0.78 ~91 | ~89 |92 88 83 97
mbic
1,2 X2-11 0.78 86 94 91 89 97 83
1 Staurolite St-1-1 1.26 95 85 91 89 90 90
1 Amphibole | A-030 Mon. | 0.78 - - 96 84 93 87
1,2 A-030 . 1.26 95 85 ~84 | ~96 | ~84 | ~96
1-3 A-030 2.67 91 89 ~96 | ~84 | 93 87
1 Diopside D-009 1.26 96 84 116 | ~64 | - -
1,2 D-009 2.67 90 90 100 | 80 83, |-
56,
41
1 Nephrite Ne-3 . 1.26 99 81 83 97 - -
1 Nefr-033 0.78 93 87 95 85 92 88
1 Nefr-033 2.67 91 89 101 |79 91 89
1 Orthoclase | O-015b 0.78 78 102 | 86 94 - -
1-3 0-015b 2.67 90 90 91 89 89 91
1 0O-019b 0.78 90 90 95 85 101 |79
1,2 0-019b . 1.26 79 101 | - - 89 91
1 Spodumen | SP-1-1 . 90 90 91 89 - -
1-3 Microcline | XIX-1-b | Tricl. | 0.78 - - 91 89 86 94
1 M-1 0.78 87 93 87 93 86 94
1 M-1 1.26 - - 86 94 97 83
1 M-1 2.67 92 88 - - 95 85
1 M-2 0.78 97 83 88 92 86 94
1 M-2 1.26 ~83 | ~97 | ~84 | ~96 | 97 83
1,2 M-2 2.67 89 91 90 90 87 93

Notes: a1, o are represented in degrees.

The mineral structural elements and cleavages are likely to respond to the
frequency increase. For instance, as the frequency whose wave length will be
comparable with a structural element or cleavage approaches the vibration, absorption
will be maximum. T.M. Proctor [1971] observed this phenomenon on artificial media.

Microcline samples XIX-1-b, M-1 and M-2 were made so that the
crystallographic axis [001] coincided with the normal direction 1-1' to a cube side and
the axis [010] - with the direction 2-2'. The acoustopolarigrams obtained at the
crossed polarization vectors show that the orientation of the elastic symmetry element
projections is virtually perpendicular to the sample sides (Fig. 7.10c, 7.9d, Table 7.6).
The projections of the elastic symmetry elements are observed in all the three
mutually perpendicular directions.
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Table 7.7.

Indexes of linear acoustic anisotropic absorption in the samples of some rock forming
minerals of the syngony lower category.

Expe- | Mineral Sample Syn- Fre- D, D, D; Notes
riment gony quen-
No cy,
MHz

1,2 Aragonite X2-7 Rhom | 0.78 0.22 0.72 0.66 L1, P1-3

-bic
1,2 X2-11 0.78 0.10 0.14 0.16 L3, P2-3
1 Staurolite St-1-1 1.26 0.022 | 0.13 0.18 P2-3
1 Amphibole | A-030 Mon. | 0.78 0.55 0.14 0.29 L1, P1-2
1,2 A-030 1.26 0.34 0.64 0.89 L1, P1-3
1-3 A-030 . 2.67 0.43 0.57 0.88 L2, P2-3
1,2 Diopside D-009 1.26 0.013 | 0.56 0.66 P2-3
1,2 D-009 2.67 0.012 | 0.20 0.18 L1
1 Nephrite Ne-3 1.26 0.062 | 0.034 | 0.17
1 Nefr-033 0.78 0.21 0.12 0.22 L1, P1-3
1,2 Nefr-033 2.67 0.013 | 0.083 | 0.05
1 Orthoclase | O-015b 0.78 0.44 0.24 0.14 L2, P1-3
1,2 0-015b 2.67 0.64 0.67 0.45 L3, P1-3
1 0-019b 0.78 0.054 | 0.22 0.29 L1
1,2 0-019b 1.26 0.33 0.41 0.50 L1, P1-3,
1-3 0-019b 2.67 0.53 0.61 0.74 L2, P2-3
1 Spodumen SP-1-1 1.26 0.25 0.11 0.024 | P1-3
1 Microcline | XIX-1-b Tricl. | 0.78 0.84 0.87 0.64 P2-3,L3
1 M-1 0.78 0.27 0.26 0.24 P2-3,12
1 M-1 1.26 0.33 0.065 |0.72 L2
1 M-1 2.67 0.42 0.022 | 0.40 P1-2
1 M-2 0.78 0.045 | 0.49 0.47 P2-3
1 M-2 1.26 0.78 0.11 0.87 L2
1 M-2 2.67 0.67 0.022 | 0.44 P1-3

This suggests that microcline has an elastic symmetry of the type not higher than
orthorhombic. At the same time the mutual angles between the elastic symmetry
elements just slightly differ from a right one. An overview of the data from Table 7.6
shows that at all frequencies and on every sample those differences do not exceed 5°.

The results presented in Table 7.7 testify to a considerable range of the LAAA
manifestation in microcline. For instance, in the samples M-1 and M-2, (Fig. 7.10c,
7.10d), whose acoustopolarigrams were obtained at fo= 1.26 MHz the LAAA effect is
most conspicuous. For the first, second and third pairs of the sample M-2 sides they
are D; = 0.78, D, = 0.11 and D3 = 0.87 respectively. On sides 1 and 3 of the samples
at parallel polarization vectors we have detected acoustopolarigrams which diameter
along direction 2 is considerable and along directions 1 and 3 - small. Judging from
the direction of the largest diameters of the VP acoustopolarigrams obtained on sides
1-1' and 3-3', a linear type of this effect L2 has been registered in the samples M-1
and M-2.

The most likely explanation for the observed LAAA phenomenon as well as its
linear type is the following. In the crystallographic axis direction [010] in microcline
crystals a perfect cleavage is observed, but its plane is parallel to the plane (001). In
the direction 2-2' the planes of these two cleavage systems and the angle close to a
right one intersect. For this reason we observe a great manifestation of the LAAA
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effect in the direction 1-1' from one cleavage and in the direction 3-3' - from the other.
In the direction 2-2' the signal attenuates to the same extent from both cleavages. That
is why the degree of LAAA manifestation detected on side 2 is low.

However, at other vibration frequencies, as with orthoclase samples, changing of
the LAAA manifestation type and the directions related to this effect occurs (Table
7.7). For instance, at fy = 0.78 MHz in the sample XIX-1-b both the plane P2-3 and
linear L3 types are registered. At fo = 2.67 MHz in the microcline samples M-1 and
M-2 the plane type of LAAA is observed - P1-2 and P1-3 respectively. Thus, in
microcline, as well as in orthoclase, at one frequency the greatest absorption occurs
on the structural elements of one cleavage, at the other frequency - on the elements of
another cleavage. A comparatively
identical absorption on both elements
takes place at fo = 1.26 MHz.

For the first time the LAAA effect

was found in the rocks from the lower g . _[3] _
section of the Kola Superdeep Borehole L v
]
O @ |

®

[Gorbatsevich, 1982]. This effect has

] a
.0 2
been detected in 90% of the rock samples b

i
[
1
®
extracted from the 4.5-12.06 depth range _

[Gorbatsevich & Il'chenko, 1997]. A high [—ﬂ 3 - &

degree of LAAA in microcline allows

one to conclude that the presence of this @ | @ P] F]

effect in crystalline rocks may be caused " e [

by this mineral contained in the rocks as (] L @ o “m =

well as by some minerals of the feldspar *

series (oligoclase, orthoclase et al.).

In scientific literature we have not @ | ® F] ![1] d
met any information on the LAAA and

DSW manifestation in minerals. Most [@OD 0 s [2]

likely, the manifestation of LAAA and

pleochroism in minerals are not

1nten§1ated. For ¥n.stance, mlqrocllne does Fig. 7.10. Acoustopolarigrams of nephrite (a),

not Vlrtually exhibit pleochrOISm [Tréger, orthoclase (b), microcline, sample M-1 (c)

1959]. The results presented in this work  and microcline, sample M-2 (d).

show possibilities of the

acoustopolariscopy method in relation to

investigation of mineral physical properties. On the other hand, these data indicate

that on the whole a lot of work is to be done for all mineral types.

The main results of investigation for mineral samples of higher and medium
syngonies may be stated as follows:

1. The acoustopolariscopy method permits determining an arrangement and mutual
angles between the elastic symmetry elements in a mineral with high precision.
Such determinations are possible for media of cubic syngony as well.

2. As a rule, the mutual angles between the elastic symmetry elements in the
samples of measured minerals are close to a right one. The exception is quartz. In
one of the sections of this mineral three elements of elastic symmetry forming
mutual angles other than a right one have been observed.

3. Classes of mineral elastic symmetry may differ from the symmetry classes
defined by their optical properties. It is indicated by, for instance, determination

c
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of elasticity parameters for quartz, which support the difference in element
orientation for crystallographic and elastic symmetry.

In minerals of medium and lower syngonies the LAAA effect is conspicuous. The
LAAA effect is rather weak in minerals of higher syngony which, most probably,
is related to the crystal structure defects. In silicate minerals of lower syngonies
this effect is observed virtually on all samples. In this case LAAA may be
observed along with pleochroism (tourmaline) or independent of it (orthoclase,
microcline). In such minerals as amphibole, orthoclase and microcline its
manifestation is related to cleavage in natural samples.

On some minerals a clear dependence of LAAA and its type on the vibration
frequency is observed. For instance, in microcline as well as in orthoclase at one
frequency the greatest absorption occurs on structural elements of one cleavage,
at another frequency - on the elements of another cleavage. A comparatively the
same absorption on both elements takes place at fo = 1.26 MHz. Accordingly, as
the frequency changes, the LAAA type changes, too. For instance, when the
absorption on the structural elements of one system prevails, the plane type will
be observed. When two orthogonal systems of cleavage act, the LAAA linear
type will be detected.

In one of the sections of the tourmaline sample the acoustopolarigram with the
clear manifestation of the DSW effect has been registered.
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8. ACOUSTOPOLARISCOPY OF MONO- AND POLYMINERAL ROCKS

8.1. Manifestation types of the linear acoustic anisotropic absorption effect in
crystalline rocks

In a sequence of acoustopolariscopy of mono- and polymineral rocks
[Gorbatsevich, 1995] quite a lot of acoustopolarigrams have been obtained whose
shapes cannot be explained only by the elastic anisotropy manifestation, Fig. 1.4.
Some acoustopolarigrams' dissimilarity from theoretical ones can be explained by
rock heterogeneity. Peculiar shapes of acoustopolarigrams are observed when the
linear acoustic anisotropic absorption (LAAA) and depolarisation of shear waves
(DSW) effects are displayed. Our observations confirm that the LAAA effect may be
presented by two main models - plane and linear, Fig. 2.5. The plane model (I) is
exhibited in crystalline rocks containing oriented cracks or plane elements (minerals),
such as mica, talc et al. Other than the first the linear model (II) manifests itself in
rocks containing linear elongated in one direction, isometric in the cross section
mineral grains. As follows from the diagrams, Fig. 2.5, the difference of the model I
medium from that of model II can be established only on the basis of the spatial
measurements system.

R

Fig. 8.1. Acoustopolarigrams: a - talc-phlogopite-tremolite schist (sample 26715); b -
clinopyroxene amphibolite (sample 24788). Solid line - parallel vectors, dotted line - crossed
vectors.

The LAAA display by the model I type was detected on cubic sample 26715 of
talc-phlogopite-tremolite schist. Clearly expressed by phlogopite and talc schistosity
enabled exact orientation of the sample sides during its preparation. The
acoustopolarigrams for the three pairs of sides, accordingly in the directions 1-1', 2-2',
3-3', are given in Fig. 8.1a. In the directions 1-1' (D = 0.83) and 2-2' (D = 0.86) the
media exhibits a high degree of LAAA. In the direction 3-3' (D = 0.13) the VP
acoustopolarigram is more isometric. The direction of the greatest transmission on
side I is oriented to side 2 and on side 2 - to side I.

The LAAA manifestation by the type of model II was observed on cubic sample
24788 of clinopyroxene amphibolite. The structure of clinopyroxene amphibolite is
characterized by clearly visible greatly elongated grains of hornblende. The sample
sides are formed in such a way that the direction 1-1' coincides with the axes of
elongated grains. The VP acoustopolarigram obtained in the direction 1-1', Fig. 8.1b,
showed, accordingly, a low grade of LAAA (D = 0.17). In the directions 2-2' (D =
0.79) and 3-3'(D = 0.73) the LAAA manifestation is much greater. Both directions of
the greatest transmission are oriented to side I. Sample 24788 also pertains to highly
anisotropic media.

In samples 26715 and 24788 the LAAA manifestation by model I and II types is
most conspicuous. However, there are some media in which the LAAA manifestation
is caused by elements of both linear and plane types [Gorbatsevich, 1995].

As follows from the observations, the LAAA effect arises in crystalline rocks
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when linearly polarized shear waves interact with oriented linear, plane or some other
heterogeneities. But these may be oriented holes or cracks both filled with, for
instance, liquid and gas (Fig. 2.3). This effect is exhibited in minerals, rocks, wood
and plastics [Gorbatsevich, 1999]. To our mind, it may be displayed in metals,
concrete, ceramics, construction, building and composite materials.

8.2. Cross effect of elastic anisotropy and linear acoustic anisotropic absorption
with an angular disagreement between their symmetry elements

In rocks elastic anisotropy and the LAAA effect most often manifest themselves
together [Gorbatsevich & Il'chenko, 1997]. By the results of our observations the
spatial arrangement of the symmetry elements of elastic anisotropy and linear acoustic
anisotropic absorption in crystalline rocks do not always coincide. Consider the
acoustopolarigrams of some rocks, Fig. 8.2.

Sample 30020 is Dbiotite-
plagioclase gneiss. It has been d |
produced from the Kola superdeep a I
borehole (SD-3) core extracted
from a depth of 7959.1 m.
According to acoustopolariscopy of
one of its cross-sections, Fig. 8.2a.
sample 30020 is an anisotropic
medium with strong LAAA. The

shape of this  cross-section
acoustopolarigram may be
compared with the

acoustopolarigram of the wooden
plate (Fig. 2.7, 3).

Sample 27227111 of epidote-
biotite-amphibole-plagioclase
crystalloschist has been produced
from the SD-3 core recovered from
a depth of 8017.0 m. The shape of
the VC acoustopolarigram from one

of the sample cross-sections, Fig.
8.2.b, shows signs of the angular
divergence between the orientation
of elements of elastic symmetry and
LAAA - the VC diagram petals are
not equal in size and area. By the
VC and VP diagrams shapes one
may judge that this angular
divergence is close to the value
obtained by calculation (Fig. 2.6)

Fig. 8.2. Acoustopolarigrams of one of the cross-
sections of crystalline rock samples.

a - biotite -plagioclase gneiss (30020); b -
epidote-biotite-amphibole-plagioclase schist
(27227WWL); c¢ - cummingtonite amphibolite
(27026Ll); d - sandstone (1753); e - fine-
psephitic-psammitic andesite-basaltic tuff (1161);
f - epidote-biotite-plagioclase gneiss (28184).
Vectors parallel - solid line, vectors crossed -
dotted line.

and on the model (Fig. 2.7) with the angle of directions disagreement between the

plates 7= 15°.

Sample 27026111 of cummingtonite amphibolite has been cut from the SD-3 core.

The acoustopolarigram (Fig. 8.2¢) of one of its cross-sections shows a strong display
of the LAAA effect. As in the previous case, the VC diagram petals differ in size and
area. The shape of the VC diagram is close to that of the diagram obtained on the
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model with the angle 7 higher than 15°, but lower than 30° (Fig. 2.7c). The angular
disagreement between the symmetry elements of elastic anisotropy and LAAA of the
sample is reflected in great asymmetry of the petal sizes in the VC acoustopolarigram.

The acoustopolarigram (Fig. 8.2d) of the sandstone (sample 1753) from the
borehole 30p1 at the Yarigskoye deposit (Komineft') is characterized by a very large
amplitude obtained at crossed polarization vectors. It exceeds the amplitude detected
at the VP position. A similar correlation was obtained for the model
acoustopolarigram (Fig. 2.7d) at T = 45°.

Sample 1161 has been produced from the Ural Superdeep Borehole (SD-4) core.
Its VC diagram is very elongated (Fig. 8.2e). The lateral petals located along the
normal to the figure's largest diameter are very small. The shapes of the VC and VP
diagrams are very close to the calculated ones (Fig. 2.6) and to the shapes obtained on
the model (Fig. 2.7) at 7= 30°.

Sample 28184111 has been produced from the SD-3 core. Its acoustopolarigrams
are given in Fig. 8.2f. Judging by their shapes the disagreement between the
symmetry elements of elasticity and LAAA in this sample reaches 75° or 15°, Fig. 2.7.

Thus, the acoustopolarigrams, Fig. 8.2, show that in natural media a spatial
orientation disagreement between the symmetry elements of elastic anisotropy and
LAAA is observed. An indication of this disagreement is asymmetry in the petal sizes
of the acoustopolarigrams obtained at crossed polarization vectors. Another sign is an
amplitude enlargement of these petals, sometimes to the sizes exceeding the petal size
of the acoustopolarigrams obtained at the VP position. As the diagrams, Fig. 8.2,
analysis shows, by the shapes of the acoustopolarigrams obtained for natural media
one can judge about the disagreement angles between the symmetry elements of
elastic anisotropy and LAAA. The presence of such disagreement up to an angle 7=
30-75° allows one to think that physical grounds of elastic anisotropy and the LAAA
effect are radically different. The LAAA effect is not only subordinate to the elastic
anisotropy display in solid bodies.

This conclusion is also confirmed by the results from the SD-3 samples
[Gorbatsevich et al., 1992]. During the tests on every side of the cubic sample the
value of D and the factor of acoustic birefringence Bg (6.19) were determined. On
every side the factor Bs and
index D express the degree D
of elastic anisotropy and g1
linear anisotropic absorption ]
of the medium, accordingly. 084 + +

Figure 8.3 presents the . *
determined index D and the 1 .
factor of acoustic 087 7 e .
birefringence for some 50 1+t
samples produced from the 0.4 o
SD-3 core The shape of the 4 e
point scattering in Fig. 83  gpfefet =~ o ¥
. . . .. . +_! +5° .
indicates  that there is # e .
virtually no  correlation %‘ +4 .'l:. oot
between the values of Bg and 0_| 02 03 04 05 B
D.

[+
e 1o

L]
+ .
L

1

It should be believed Fig. 8.3. Distribution of unit values D - LAAA index and
that the cross effect of the birefringence factor B for rocks from the SD-3 section.

. 1 - schist, 2 - amphibolite, 3 - biotite gneiss (granite).
elements of elastic ! pRIbOT iotite gneiss (granite)
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symmetry and linear anisotropic absorption will be observed as shear waves
propagate not only in rocks but in layered plastics, composite materials, metal alloys
and other media with a complicated structure.

The signs of disagreement between the symmetry elements of elastic anisotropy
and LAAA can provide additional information on the structure, composition and
peculiarities of a medium. As we showed above, such signs are the presence of
asymmetry in the petal sizes in the acoustopolarigrams obtained at the crossed
polarization vectors and an anomalous enlargement of their amplitude. The
disagreement signs for the orientation of the symmetry elements of elastic anisotropy
and LAAA detected in rocks as well as the absence of correlation between the
anisotropy parameter Bgs and the index D allow one to conclude that these effects can
display themselves independently of one another.

The spatial function of LAAA, as well as the optical analogue of dichroism
[Goncharenko et al., 1979], is likely to be described by the tensor of no less than the
second order. The calculation of the parameters defining an interaction of the two
tensors - elasticity and absorption - with heterogeneity and symmetry elements that do
not coincide, is a rather intricate task. However it can be solved experimentally.

8.3. Experimental results of detecting the DSW phenomenon in rocks

During determination of elastic-anisotropic properties of the rock samples
extracted from the Kola (SD-3) and Ural (SD-4) superdeep boreholes and from the
wells at Ukhta oil fields and some others by the acoustopolariscopy method a rather
frequent display of the depolarization of shear waves (DSW) effect was observed. Fig.
8.4 gives acoustopolarigrams for six samples of sedimentary and crystalline rocks in
which this effect was detected.

The measurements were performed on cubic samples in three mutually
perpendicular directions. Accordingly, acoustopolarigrams 1, 2 and 3 (Fig. 5.5) were
obtained for the first, second and third sides of one sample. The samples properties,
such as density, sampling depth H, quasi-matrix of velocity Vj; (see point 5.5), index
of LAAA, are presented in Table 8.1.

Sedimentary rock samples 22 and 1724 (Fig. 8.4a, 8.4b) have been taken from a
well of "PechorNIPINeft" oil fields. In the limestone (sample 22) the DSW effect was
displayed on side 2. If the acoustopolarigram of side 2 is compared with the diagrams
in Fig. 3.2 and 3.3 it may be concluded that the elastic symmetry elements of mineral
grains that are in the side plane are randomly oriented relative to each other within 15°
or 75°. On the other sides of this sample the LAAA display is very strong. In the
sandstone (sample 1724) the DSW effect was displayed on side 3, the random
orientation of the grain symmetry elements here being about 30-40°.

Samples 182 and 1191 taken from the Ural Superdeep Borehole (Fig. 8.4c, 8.4d)
are crystalline diorite (sample 182) and tuff (sample 1191) of volcanic origin. The
DSW effect is displayed on the acoustopolarigrams of sides 1 and 2 of sample 182.
The angle of random orientation of the grain elastic symmetry elements may be
assessed as close to 80° (see Figs 3.2, 3.3). On sides 3 and 4 of sample 1191 a joint
display of the DSW and LAAA effects is observed. The angles of random orientation
of elastic symmetry elements in mineral grains may be within 30-50°.
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Fig. 8.4. Acoustopolarigrams for sample 22 of brown limestone (a), sample
1724 of sandstone (b), sample 182 of subalkaline quartz diorite (c), sample
1191 of tuff of andesite basalt (d), sample 300200f biotite plagioclase
gneiss (e), sample 31587 of garnet-clinopyroxene-hornblende amphibolite
(f). 1, 2, 3 are sample sides. VP - solid lines, VC - dotted lines

A comparatively frequent DSW manifestation is observed in metamorphosed
Archean rocks along the Kola superdeep borehole section. As an example Fig. 8.4e
and 8.4f present acoustopolarigrams of biotite-plagioclase gneiss (sample 30020) and
garnet-clinopyroxene-hornblende amphibolite (sample 31587). Judging by the
acoustopolarigrams, both samples have schistose structure. However, in the plane of
side 1 (sample 30020) and side 3 (sample 31587) a fan pattern of elastic symmetry
elements in grains up to mutual angles of 50-70° is observed. On sides 1 and 2 a very
strong LAAA manifestation has been detected.
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Table 8.1.

Elastic-anisotropic properties of rock samples displaying the DSW effect.

N | Sampling Rock Sample |Den- [Depth | Velocity matrix Vj;, | LAAA
o | location sity H, m km/s index, D
P>
glsm’
1 | Usa deposit | Brown 22 2.57 1234 3.32 2.18 2.20 0.82
limestone 2.22 3.64 2.26 0.03
2.15 2.09 3.52 0.61
2 | Yarigskoye | Sandstone 1724 2.68 |35.1 1.89 1.39 1.38 0.07
deposit 1.36 2.14 1.42 0.09
141 1.39 2.03 -
3 | Ural Subalkaline | 182 2.79 806.6 6.01 3.46 3.47 0.07
superdeep quartz 3.50 6.11 3.48 0.06
borehole diorite 3.48 3.52 6.10 0.03
SD-4
4 Tuff of | 1191 290 [2963.6 |540 3.42 294 0.20
-"- andesite 3.31 520 2.92 0.40
basalt 3.05 2.60 4.22 0.28
5 | Kola Biotite 30020 |2.59 8566.4 |3.12 1.75 1.75 0.00
superdeep plagioclase 1.66 3.93 2.05 0.05
borehole gneiss 1.70 1.90 3.71 0.59
SD-3
6 Garnet 31587 |3.03 8867 4.82 2.77 2.35 0.47
=" clinopyroxen 2.81 4.08 2.18 0.45
e hornblende - 2.00 2.69 0.09
amphibolite

The above assessment for the angles of random orientation of elastic symmetry
elements in mineral grains is particularly rough, since it does not include the grain
size, the relation between the wave length and wave frequency and other factors.
Determination of angles ¢, for instance, by optical indicatrixes is very complicated
due to the difference in mutual orientation of optical and elastic symmetry elements in
crystals [Kazakov, 1987]. It is difficult to take this difference into account. It should
be also noted that the detected depolarization effect arises precisely due to the random
orientation of elastic symmetry elements in the plane perpendicular to the wave
propagation. For instance, in Fig 8.4 this effect has been detected only in one
direction for the three samples and in Fig. 8.4c and 8.4d - in two directions. If the
effect display had been caused by scattering of the shear waves on small- and large-
scale heterogeneities, the effect of depolarization would have been observed in all
three directions. Earlier the effect of depolarization of volume elastic waves when
scattering in a randomly heterogeneous medium has been described by S.I.
Alexandrov [1997].

A theoretical analysis, experiments on the model and measurements of elastic
anisotropic properties of some rock samples by the acoustopolariscopy method
showed that as shear waves propagate through anisotropic media consisting of
structural units with differently oriented elements of elastic symmetry, previously
unexplored phenomena may be observed.

1. From the analysis of shear waves propagation, for instance, by the
acoustopolariscopy method anisotropic heterogeneous media, consisting of
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mutually orthogonal by elastic properties layers (grains), can be identified as
isotropic.

2. If the elastic symmetry elements in layers or grains constituting an anisotropic
medium are mutually randomly oriented in the range of 10-80°, the propagation
of linear polarized shear waves in the directions close to the normal to the plane
of random orientation is accompanied by their depolarization, i.e. increase in their
ellipticity grade. This phenomenon called the effect of depolarization of shear
waves (DSW) is most displayed when the angle of random orientation between
the elastic symmetry elements in grains (layers) is close to 45°. In the
acoustopolarigrams of multicomponent media samples the DSW phenomenon
may be discovered in the cases when the 4y amplitudes at crossed polarization
vectors in their minima points are markedly higher than those detected at the
same points in the acoustopolariscope without the sample. The DSW
phenomenon allows one to assess the angle of random orientation of the elastic
symmetry elements in grains (layers) in mono-and polymineral rocks.

3. The DSW phenomenon displayed as shear waves propagate through anisotropic
media composed of structural units with randomly oriented elastic symmetry
elements, unlike the similar effect arising in heterogeneous media, is detected
only in one or two directions in a solid body.

4. To our mind, the DSW phenomenon under study can also occur when shear
waves propagate through geological media during seismic investigations. An
increase in the shear waves ellipticity on the seismic work routes in Western
Siberia mentioned in [Rezyapov, 1992; Skavinskiy & Din Yun En, 1992] can be
explained by the display of this phenomenon. Further investigation of the
phenomena accompanying propagation of shear waves in multicomponent
anisotropic media will facilitate the analysis of properties of crystalline rocks as
well as metals, ceramics, plastic, concrete, composite material et al.

8.4. Correspondence principle for metamorphosed rocks

The application of the acoustopolariscopy method for investigation of elastic and
non-elastic characteristics of minerals and rocks has greatly expanded our knowledge
of their structure and properties. Acoustopolarization investigations of the rocks from
the Voche-Lambina geodynamic region and the core extracted from various depths of
the Kola (SD-3) and Ural (SD-4) superdeeps, Vorotilov and Tyrnyauz deep boreholes
etc. showed that in the upper crust anisotropic rocks of orthorhombic and, to a lesser
degree, of transverse-isotropic symmetry types prevail [Gorbatsevich, 1995; Rozaev
& Gorbatsevich, 1996]. Following Aleksandrov and Prodaivoda [Aleksandrov &
Prodaivoda, 2000], in Archean gneisses and amphibolites lower symmetry forms are
observed as well. One of common effects reflecting structural features of rocks is the
effect of linear acoustic anisotropic absorption (LAAA). This effect is registered by
the acoustopolarization method in layered and linearly textured rocks and in rock
forming minerals displaying perfect cleavage [Gorbatsevich et al., 1999].

The results of acoustopolarization observations, on the whole, allow one to
conclude that elastic properties of crystalline rocks have both determined and
statistical components. Their proportion should be determined for every specific rock
taken at every specific location. In our opinion, in most cases the elastic symmetry
type of metamorphosed crystalline rocks may be not lower than orthorhombic. This
consideration is based on the fact that the factor forming the rock elastic anisotropy is
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most often the stress tensor, especially if those stresses, let us call them
palaeostresses, act during a long (geological) time.

According to the elasticity theory, there is a direct relation between the
palaeostress tensor and the type of elastic anisotropy of a rock. This has been
corroborated by the observations as well [Robin, 1979; Kozhevnikov, 1982]. For
instance, under the action of a uniaxial palaeostress field, with 7} > T, = T3, it may be
concluded with certainty that anisotropy of transverse-isotropic type will arise in the
rock. Given lithostatic and horizontal tectonic fields, with 77 > T, > T3, the
orthorhombic type of elastic symmetry appears in the rock. Heterogeneities, the
presence of primary anisotropy will distort the state of the rock total anisotropy.

During metamorphic transformations when anisotropy arises the principle of
potential power minimum is realised in the rock. According to this principle in the
direction of the greatest component of the palaeostress field Tmax the least velocity of
compression waves Vpin, 18 observed, while in the direction of the least component
Tmin the greatest velocity Vi 1s detected [Belikov et al., 1970; Kozhevnikov, 1982;
Gorbatsevich, 1995]. For the rock element located in the massif the value of Ty, is
unknown as a rule. Near the earth surface it may be close to zero. At the same time
the values of elastic wave velocities in a sample always have the values other than
zero. With this, on the whole, the ratios between the palacostresses and velocities in a
metamorphosed rock can be presented in the following way:

Tmax = ﬁ (Vmax _Vmin ) + Tmin > (8 1)
Tav = fZ (Vav _Vmin)+Tmin' (82)
The value of the third component 7i,i, can be determined by the ratio

Tmin =f3(Vmin _VO)’ (83)

where V,, is the average velocity, Vj is the velocity value in the isotropic sample
measured to the changes caused by a metamorphic process.

There is a problem of determining the value of V) in an altered metamorphosed
rock. The value of V,, from the expression (6.13) can be taken for the value of V),
But, on the whole, the velocities of wave propagation in metamorphosed rocks, as a
rule, are lower than, for instance, those in volcanic rocks. In Eq. (8.1)-(8.3) f1, fo, f3
reflect some functional dependencies of V;; vs components of the palaeostress field.
The proportionality reflected in Eq. (8.1)-(8.3) will extend to the agreement between
the rank of the velocity matrix and the rank of the palaeostress field tensor.

Since the stress field in homogeneous bodies is described by the tensor of not
higher than the second rank, the quasi-matrix (5.5) can quite adequately reflect the
relationship among the velocity values in an anisotropic metamorphosed rock. Thus,
the relations between the palaeostresses and velocities in a metamorphosed rock may
be considered as corresponding to some correspondence principle. This principle
results from the more general superposition principle stated by Pier Curie [1966]: if
certain causes initiate the corresponding effects, the symmetry elements of the causes
should manifest themselves in the effects induced by them.

As applied to the relation between the stress field type and the elastic symmetry
type of the rock, the correspondence principle can be formulated in the following
way. In the palaeostress field, in which the three main components are not equal, the
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crystalline rock acquires the orthorhombic symmetry type. In the palaeostress field, in
which two components are equal and the third one differs from them in value, the
rock acquires the transverse-isotropic symmetry type. Rocks that experienced
substantial metamorphic transformations with persistent orientation of the
palaeostress field components will have the symmetry type not lower than
orthorhombic.

In accordance with the stated correspondence principle in metamorphosed rocks
the orthorhombic and transverse-isotropic types of elastic symmetry will be most
frequent. Rocks penetrated by the Kola superdeep borehole have the orthorhombic
and transverse-isotropic types of elastic symmetry, the orthorhombic type being
predominant [Gorbatsevich, 1995]. The predominance of the orthorhombic type
corroborates the fact that in the geological past of the Pechenga massif tectonic
shoves were very active [Orlov & Laverov, 1998].

The principle of correspondence of the palaeostress type with the type of the
elastic constants matrix will be broken if some other reasons arise and their influence
on the rock will be greater than that of the palaeostresses. For instance, it may be the
mechanism of a viscous flow. It should be believed that with depth the component
distribution in the stress field will be close to hydrostatic [Gorbatsevich, 1996]. In a
heterogeneous rock that experienced several superimposed cycles of the stress state
alteration and other influences this correspondence principle will be also violated.

8.5. Assessment of palaeostresses parameters in metamorphosed rock massifs

As indicated above, the transition of a rock to the anisotropic state occurs under
the influence of palaeostresses and deformations during structural-metamorphic
evolution of metamorphic complexes. Therefore a comparative analysis of elasticity
constants C,p (6.4), anisotropy factors A, Bs and other data allow obtaining
information on the rocks stressed state that existed at the most significant stage of the
palaeostress activity.

Following Kozhevnikov [Kozhevnikov, 1982], in polymineral rocks under the
non-hydrostatic palacostress field influence minerals will acquire a new orientation
that reflects the evolution of the main factors - pressure, temperature and time of their
activity. At one and the same period some minerals will experience syntectonic
crystallization and acquire a thermodynamically stable orientation. On the whole, in
anisotropic rocks the elasticity values of C,p will be related to the components of the

stress (palacostress) tensor 7j; of the deformation stage &; by a similarity of

generalized Hook's law:
T, =C e f(t,A). (8.4)

In this equation ¢ and A are the time factor and temperature, whose functional relation
to the T}, Cpp, &; parameters is still to be established.

However it is known that syntectonic crystallization causes a rigid connection
between Tj; and Cgp in amphibolite and some other metamorphic rocks (Kazakov,
1987). If a polymineral rock is formed in the compression stress field, then, as
mentioned above, the minimum value of the compression wave velocity (V33) or
elasticity constants (Cs3) correlate with the orientation of the maximum compression

85



force (7). Thus, the maximum compression force (77) will be oriented along the
normal to schistosity.

The least palacostress 73 is oriented along the axis coinciding with linearity and
corresponding to the greatest compression wave velocity V;; and, accordingly, to Cj;.
The intermediate value of 7> will be predominantly oriented parallel to schistosity, but
along the normal to linearity. The diagram in Fig. 8.5a will correspond to rocks of
rhombic symmetry. As mentioned above, in direction 3 the compression wave velocity
1S minimum.

For the model, Fig. 8.5a, in direction 1 coinciding with the linearity the value of
this velocity is maximum and in direction 2 it acquires an intermediate value. In the
schistose rock model of pseudohexagonal symmetry the orientation of palacostresses
T\, T, = T5 components can be presented as it is shown in Fig. 8.5b.

The models, Fig. 8.5, allow suggesting the coefficients reflecting the relative
values of the stress field components under which elastic properties were formed, a
certain orientation of the symmetry b)
elements and anisotropy type arose.
For the model, Fig 8.5a, in accordance
with generalized Hook's law, the
coefficients Kj; will be proportional to
the relationship among the elasticity
constants values Cq1, Can, Css: 3

Vaa Vg

Ki; =TV/T3 = Cii/Cs3 = (Vll)j/(V%)z’ Fig. 8.5. Schematic orientation of components
Koy = To/T3 = C11/Cyo = (V1)) A Va2)', Ti =0 T, = 6 T3 = 03" of the compressing
Ki3 =TT = 1. (8.5) stresses field for the rock of orthorhombic (a)

and pseudohexagonal (b) symmetries. The

Those coefficients will reflect the arrows show the direction of linearity L.

relationship among the stress field
components for rocks of rhombic symmetry in directions 1, 2, 3. For the model in Fig.
8.5b the coefficients, accordingly, are:

K12 = K13 = T1/T2 = C]l/C33 = (Vll)z/(V33)2, K2/K3 = 1, (86)

since here the relationship among the palacostress components is 71 > T, = T5.

The analysis of the coefficients Kj,, K3, K>3 as well as spatial orientation of the
greatest, least and average velocities measured in the samples with their preserved
spatial orientation in the rock mass will allow one to reconstruct the main
characteristics of the palaeostress field.

An example of such reconstruction performed at outcrop 145 of the Voche-
Lambina geodynamic region is given in Fig. 8.6 [Voche-Lambina..., 1991]. The
procedure of measurements and determinations was the following. First we took
samples marking an azimuth and incidence angle of their main surfaces. Then being
oriented to layering (schistosity) and linearity, samples in a cubic form were sawn.
After that by the acoustopolariscopy method (see point 5.3) the planes of the greatest
anisotropy relative to the sample sides were determined.

Using the Wulff net and the data on the azimuth and the angle of side incidence
we made the calculations of the azimuth and the incidence angle of the normal to the
plane of the greatest anisotropy. In Fig. 8.6 on the outcrop 145 sketch map these
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directions are depicted as arrows. The arrow size is proportional to the relative value
K;;. The values of the pitch angle for direction 7} are given alongside the arrows.

Fig. 8.6. The direction and relative value of the compressing palaeostresses greatest
component on the sketch map of outcrop 145 of Voche-Lambina geodynamic region.
1 - plagiogranite, 2 - granodiorite, 3 - oligoclase-microcline granite, 4 - veined occurrences, 5 -
ruptures, 6 - sampling locations, 7 - palaeostresses directions (the outcrop sketch map
compiled by V.V.Balagansky and L.N.Korolyova).

An overview of the data from Fig. 8.6 shows that at outcrop 145 two isolated
directions of the component 7; action are revealed. Measurements on 8 samples
(series 145-1-4, 145-1-5, 145-1-6, 145-1-8) detected one direction with the azimuth in
the range of 354-28° and incidence angles of 28-78°. The azimuth of the second
direction is maintained rather strictly and is 58-67° with the incidence angles of 30-
66°. The second direction has been detected in the samples of series 145-1-7 and in
the sample 145-1-5b/2. From the above data one may conclude that the first and
second directions of 7 reflect the processes that occurred, accordingly, at different
deformation stages or metamorphism cycles.

The assessment made for the direction and relative value of palaeostresses, to our
mind, is more reliable in terms of their direction. The relative value of palaeostresses
is likely to depend not only on the factors reflected in Eq. (8.4). For instance, under
the oriented stress hornblende in plagioamphibolite can acquire a strict orientation and
thus cause stronger anisotropy than that observed in plagiogranite. Further
investigations, including those in experimental mineralogy for individual rocks, will
allow establishing scales of correspondence of palacostress values to the measured
elasticity characteristics.

To summarize the outlined aspects for the acoustopolariscopy use in the
crystalline rock investigations it should be noted that the most complete summaries
for determined properties of the samples from the Kola and Ural superdeep boreholes
and Voche-Lambina region have already been published [Gorbatsevich, 1995]. This
chapter is mainly devoted to the experimental study of the peculiarities of the new
effects display - linear acoustic anisotropic absorption (LAAA) and depolarization of
shear waves (DSW). The combination of comparatively strong elastic anisotropy and
LAAA occurs rather often, but they can manifest themselves independently of one
another. The detected convergence between the orientations of the symmetry elements
of elastic anisotropy and LAAA can provide additional information on peculiarities of
the rock structure. The other phenomenon - DSW allows one to assess the angle of
random orientation of elastic symmetry elements in grains (layers) of mono-and
polymineral rocks.

The study of palaeostress parameters is of no less importance. So far not so much
has been done in this field. At the same time, acoustopolariscopy enables determining
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the spatial orientation of the palacostress field components in a metamorphosed rock.
The observed relations between the values of components and elastic wave velocities
allows one to judge the relative values of these components.

In our opinion, of great importance is the principle of correspondence of the
palaeostress field parameters with the type of anisotropy transformed by this field of
the metamorphosed crystalline rock. According to this principle, in the palaeostress
field, where three main components are not equal to each other, a crystalline rock
acquires an orthorhombic symmetry type. In the palaeostress field, where two
components are equal and the third one differs from them in value, a rock acquires a
transverse-isotropic symmetry type. Rocks that experienced substantial metamorphic
transformations with persistent orientations of palaeostress field components will
possess a symmetry type not lower than orthorhombic.

On the whole, the acoustopolariscopy results obtained for a large number of rocks
of various genesis - sedimentary, volcanic, metamorphosed rocks including sandstone,
dolomite, diabase, plagiogranite, granodiorite, biotite gneiss, shale, feldspar
amphibolite et al. showed that in every sample, even in weakly anisotropic ones, the
spatial orientation of symmetry elements can be revealed. Rather often, especially in
metamorphosed rocks, the LAAA effect is displayed. Property determination of the
samples from the Kola, Ural superdeep boreholes, Voche-Lambina region et al. have
clearly showed that without the first stage - acoustopolarization measurements of
spatial location of elastic symmetry elements in a sample - anisotropic characteristics
of a rock cannot be obtained correctly. As the measurement practice showed, the
elastic symmetry elements may not coincide with the elements of visible layering
(schistosity) and linearity of the sample. A rock can be highly anisotropic even
without visible texture manifestation in the sample.
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9. VARIABILITY OF ELASTIC PROPERTIES OF ROCK SAMPLES FROM
THE URAL SUPERDEEP BOREHOLE (SD-4)

9.1. Brief description of rocks from the Ural SD-4 section

The Ural Superdeep Borehole (SD-4) has been laid in the western limb of the
Tagil megasynclinorium with the object of a comprehensive study of the Palacozoic
section in the Ural typical eugeosynclinal zone [Zagruzina et al., 1989]. In the range
down to a depth of about 3 km a monotonous unit of volcanic-clastic rocks of basic
and intermediate composition has been cut - the Silurian Immenov Formation. It is
composed of coarse tephroide and tuff of pyroxene-plagiophyre basalt and andesite
basalt, whose pyroclastic material pertains mainly to plagiophyre andesite. By the
isotopic composition of rock forming and ore elements (oxygen, carbon, sulphur and
lead) one may propose a homogeneous high temperature deep source of rocks that is
typical of basalts [Zagruzina et al., 1989]. This, in its turn, should cause the similarity
of physical properties of rocks cut by the borehole.
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Fig. 9.1. Geological column, density p, magnetic susceptibility y, compression Vp and shear
Vs wave velocities, electrical resistance R, dimensions of caverns P in the section of borehole
SD-4 [Druzhinin et al., 1999].

Figure 9.1 shows a geological column of rocks. From the surface down to a depth
of H = 0.43 km basalt and andesite basalt lavas occur. The interval of H = 0.43-1.34
km is composed of psephytic andesite-basalt pumice tuff and the interval of H = 1.34-
1.92 km - psephytic andesite-basalt tuff. In the range of 1.92-3.0 km psephytic
leucoandesite-basaltic, andesite and basaltic tuffs occur. Below 3.0 km tuff sandstone
(flysch) and tephroide lie. Accordingly, the unit boundaries are at depths of 430;
1344.6; 1921; 3001 m, etc. Inside the unites rock interlayers with quartz carbonaceous
veinlets and sulphide penetrated by numerous healed fissures, other textural and
structural peculiarities are present.
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The aim of the acoustopolarization observations on the Ural SD-4 core samples
was revealing rock elastic anisotropy, assessment of its type and degree, orientation of
symmetry elements in regard to the borehole axis, comparing them with the stability
and location parameters of the borehole. The measurements have been done on 25
cubic samples with the 40 mm edge.

The samples have been made of basalt, basalt pillow lava and breccia, andesite
basalt porphyrite, andesite basalt, andesite basalt tuff, tuffite etc. (Fig. 9.1,
Attachment 2). The samples represent the borehole intervals of 0.3-1.5 km and 2.4-3.2
km. The adopted indexing of edges and faces is given in Fig. 9.2. Acoustopolarigrams
for the samples are given in Figs. 9.3-9.5. The results of the change in density p, the
velocity of elastic waves located in accordance
with the matrix V; (5.5), LAAA index D and 3
inclination angles of elastic symmetry elements l

l

with regard to the sample faces are presented in
Attachment 2. Z3

Besides matrix Vj; obtained on a cubic sample
whose normal to face 3 is oriented along the

borehole axis, Attachment 2 presents matrix V; in

which the velocities have been measured through

~

)

the sample's additional faces. These faces were /

arranged parallel and perpendicular to the 7 e
orientation of the revealed elastic symmetry 2

elements of the medium. The photos of some Fig. 9.2. Indexing of cubic
samples with additional faces are given in Fig. 9.6. samples cut from the SD-4
When the angles between the revealed symmetry core. Direction 3 (Z) coincides
clements and the orientation of faces, Fig. 9.2, with the core axis. 1, 2 -

were no more than 15-20°, no additional faces arbitrary directions.

were made on the sample.
All matrixes V;/ in Attachment 2 have been re-oriented in such a way that a

number of relations (6.1) have been met (followed) if the medium belongs to the
orthotropic symmetry type. If the medium is pseudohexagonal, then the matrix is built
according to the relations (6.2, 6.3).

9.2. Peculiarities of acoustopolarization diagrams for volcanic rocks

First we consider acoustopolarigrams of the rock samples from the section (Fig.
9.3-9.5). By the acoustopolarigram shapes rocks from SD-4 can be divided in three
groups: rocks with weak, marked and strong anisotropy. The VP acoustopolarigrams
for the weak anisotropy rocks have a form close to a circle. The VC
acoustopolarigrams are small as compared with the VP diagrams. Due to
heterogeneity and measurement errors their shape does not often allow distinguishing
the Aycy minima and the exact determination of the elastic medium elements
direction. By these indications andesite basalts (sample 78), basalts (sample 83),
tuffites (samples 105, 152), diorites (sample 182) and tuffs (samples 253, 934, 1119)
pertain to weakly anisotropic rocks. They are scattered, within the known data, rather
evenly along the borehole section from H =356.8 mto H =2643.2 m.

The VP acoustopolarigrams for strongly anisotropic rocks (samples NeNe 1138,
1161, 1191, 1223) have the forms close to the theoretically predicted ones providing a
joint manifestation of purely elastic effects - anisotropy and non-elastic ones - linear
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acoustic anisotropic absorption (LAAA). The VP and VC acoustopolarigrams most
often represent four petal rosettes, the size of VC being comparable with that of VP.
Clear minima of the amplitudes on the VC lines allow rather precise determination of
the spatial orientation of the medium symmetry elements with the error no more than
3°. The elastic symmetry elements of these rocks form an oblique angle with the
orientation to the borehole bottom. All the rocks exhibiting strong anisotropy are fine-
psephitic-psammite tuffs. Their appearance and visible structure (for instance, the
structure of sample 1223 is characterized as homogeneous) do not allow
distinguishing them from the rocks with weak and marked anisotropy. Strongly
anisotropic rocks are concentrated in the interval of H =2867.8-3068 m.

% 50"
a 11" @ 2-2 i

A

e 5]

£

Fig. 9.3. A - acoustopolarigrams of samples No. 70, 78, 83, 92, 97 (H = 239-430.1 m). B -
acoustopolarigrams of samples No. 105, 114, 152, 172, 182 (H = 435.9-808.6 m).

9.3. Analysis of physical properties, elastic anisotropy and symmetry type of
rocks

Analysing the data from Attachment 2 one can see that the rock density varies in
the range of p = 2.77 g/sm’ to p = 2.93 g/sm’. This index does not show any regular
association with the sampling depth H. The component values of matrix Vj; and

normalized matrix V7 do not always obey the equalities stated in the relations (6.1),

(6.2). It means that not all the samples are elastic-homogeneous. By this sign the most
heterogeneous are rocks presented by samples NeNe 70, 78, 172, 199, 908, 1138.
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Fig. 9.4. A - acoustopolarigrams of samples No. 184, 192, 199, 253, 256 (H = 828.9-
1128.2 m). B - acoustopolarigrams of samples No. 401, 908, 918, 934, 1119 (H =
1440.4-2843.2 m).

One can see from the data presented (Attachment 2) how great is the difference
between the values of matrix V;; and V7.

For instance, for strongly anisotropic rocks (samples NeNe 1138, 1161, 1191 and
1223) the difference between the largest and least velocities V), V, in matrix V' is

y

much greater than that in matrix Vj;. For V,’ the least values of Vymin = 3.84-3.89

km/sec. They approach the values of shear wave velocities V. In matrix V; a

relationship between the maximum velocities of compression Vyiim and shear Vjm
waves has been found (Fig. 9.7):

Vsijm =0,57 Vpiim 9.1)

with the factor of mutual correlation » = 0.73.

The most anisotropic rocks have the lowest Vyiim and Vijjm. The index D of the
LAAA effect varies in the range of 0.0 to 0.4. It is most conspicuous in strongly
anisotropic rocks (samples NeNe 1138, 1161, 1191, 1223) and in some rocks with
marked anisotropy (samples NeNe 97, 199, 401). The samples with marked or high
LAAA, as a rule, have been taken near the zones of structural disturbances (H = 430,
924, 1440.4, 2667.8, 3068 m). In these zones contacts between the rocks of different
types are observed (Fig. 9.1).

On the basis of the data from Attachment 2 we have calculated constants C,z by
formulas (6.5)-(6.10). The anisotropy factors &€;133, €233, 1213, Y1223 At have been
determined by formulas similar to (6.11):
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Vll_V33

sz = v 9.2)
33

e = 722733 ©-3)
2233 — V33

where V) 1s maximum, V33 - minimum and V>, - medium values of the longitudinal
wave velocity in matrix Vi,

(9.4)

Vi3 = PR 9.5)

where V5 =V, +V,)/2, V5= +V3)/2, Vy=Fy+V,)/2.
We also introduced the following factor:

A, = 2(&1133 = €x33) ’ (9.6)

€133 T €033

This factor, to our mind, is a criterion that
can be used for distinguishing a symmetry type
(pseudohexagonal or rhombic). We assume that if
0< Ar < 0.25 or 1.75< At < 2.00, then a rock
should be assigned to pseudohexagonal. With Ar
= 0.25-1.75 by elastic properties a rock should
belong to the thombic symmetry.

The mentioned characteristics including
determined symmetry types are given in
Attachment 3 and 4. Accordingly, in Attachment
4 rocks of pseudohexagonal symmetry are marked
G and those of rhombic symmetry - R.

In Fig. 9.8 functional relation between the
factors 1133, 71213, Y1223 1s given. For the averaging
line, Fig. 9.8, the following equation was
obtained:

y1213 = 0.288 €1133 9.7)

. . _ Fig. 9.5. Acoustopolarigrams of
with the factor of mutual correlation » = 0.85, samples No. 1136, 1138, 1161,

1191, 1223 (H = 2866-3068 m).

1223 = 0.294 €133 (9.8)

with the correlation factor » = 0.89.

As follows from the above data, for volcanic rocks elastic anisotropy represented
by relationship between the compression wave velocities is closely related with the
anisotropy represented by the relations between the shear wave velocities. This is
especially true for highly anisotropic rocks in the depth range of 2867.8-3068 m. But
for tuffs, tuffites and basalts composing the SD-4 units the anisotropy of elastic
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properties is much more conspicuous in the compression wave velocities rather than
in the shear ones.

Fig. 9.6. Photo of the samples with additional faces cut from the SD-4 core. From left to right:
pyroxene-plagioclase andesite-basalt (sample 92); almond-shaped pyroxene-plagioclase
andesite-basalt (sample 401); andesite-basaltic psammitic fine-psephitic tuff (sample 918);
fine-psephitic-psammitic tuff (sample 1138).

If we take €133 = 0.05 (anisotropy factor Vyi1/Vp1 > 5%) as the threshold value,
then by this sign samples NeNe 78, 97, 114, 184, 192, 199, 401, 1131, 1161, 1191,
1223 pertain to anisotropic.

By the factor ¢;133 > 0.15 the last five samples should be assigned to strongly
anisotropic [Gorbatsevich, 1995], have pseudohexagonal symmetry. The symmetry of
weakly anisotropic rocks is greatly influenced by the structural heterogeneity. That is
why in relation to them the division into rhombic and pseudohexagonal symmetry can
be done only approximately. Rocks with marked anisotropy are mainly of rhombic
symmetry. These rocks with relatively high values of ¢33 belong to the
pseudoxehagonal type (samples NeNe 97, 192, 401).

9.4. The relation between the parameters of the rock elastic symmetry and the
borehole stability

To our mind, the borehole stability is determined by the presence of stresses,
anisotropy of elastic properties and the values of angles defining the position of the
stress components of the rock elastic symmetry with respect to the borehole direction.
From the above data (Attachment 2-4) one can conclude that in the SD-4 vicinity the
most complicated stress state will be observed where it intersects highly anisotropic
rocks (H =2867.8 m and below).

In this case, as noted above, the borehole stability will be greatly decreased if the
angle between the normal to the elastic symmetry plane and the borehole axis differs
from zero or the right one. According to the observations [Bakhvalov et al., 1988], in
this case the borehole axis will deviate from the vertical since during drilling the
borehole tends to occupy the position perpendicular to the elastic symmetry plane. To
assess the relation between the parameters of elastic symmetry and the borehole
stability we used the data from Attachment 2. We calculated the value of the space
angle y between the perpendicular to the elastic anisotropy plane and the direction to
the borehole bottom.

As is known [Korn & Korn, 1968], the angle between the two normals to two
planes can be determined by the formula:

A A, +BB, +C,C,
\/Af +B}+C; \/Azz +B;+C; ’

Y = arccos 9.9
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where 41, By, Ci, A2, By, (3, are the iy,

factors of the planes equations:
4 =
Aix + By, Cz+D =0, . /_/./
Axx + Byy, Cz+ D =0. (9.10) . s /./:;'
If the angle, where directions 1, 2, al //
3 (X, Y, Z) meet, is considered to be the -
origin of the coordinates, Fig. 9.2, the Voo KM
. | p{LM:T
equation of the normal to the plane : | : s - !
XOY takes the form 5 d 7
Fig. 9.7. Relation between maximum values of
Z+D;=0 9.11) longitudinal Vim and shear Vg, waves in
’ matrixes V.
In this case Eq. (9.9) becomes:
i frezs
C, i
Y =arccos — - (9.12)
VA, + B, +C, .
o 7
The acoustopolarization measu- /,/:
rements resulted in determination of the | r
angles B,1, B (see Figs. 9.3-9.5 and A /;/
Attachment 2) between the projections of . +
the elastic symmetry plane and plane . / * [ 1dien
XOY, accordingly, on the sample sides 1 Fo 4 3
} ! . 1223
and 2, Fig. 9.2. In this connection Eq. ﬁ{ + 4
b L I
(9.9) takes the form [Korn & Korn, 07 05 Erpag

1968]:

Fig. 9.8. Relation between anisotropy factors ¢1133
¥ = arccos 1 .(9.13) and Y1213, Y1223 for the SD-4 rocks.

\/tgzﬂnl +tg2ﬂn2+l

The calculated angle  for the rocks displaying marked and strong anisotropy are
given in Attachment 4. Figure 9.9 presents depth-dependent values of anisotropy
parameters €1133, ¥1213, linear acoustic anisotropic absorption D and space angle y. On
evidence derived from Yaroslavl Department of KamNIKIGS logging results are
given - the borehole real diameter P for the interval of 0.3-3.1 km. A general overview
of the data, Fig. 9.9, shows that in the vicinity of depths H = 430, 886, 924, 1440 and
2496 m, both by &1133, 71213 indexes and D values, zones with marked anisotropy of
elastic and absorbing properties have been found.
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Fig. 9.9. Indexes of elastic anisotropy €1133, V1213, linear acoustic anisotropic absorption D, the
angle between the perpendicular and the anisotropy plane w and the real diameter P of the
SD-4 borehole at different depths H.

Down to a depth of 2867 m the value of angle y ranges from zero to 86°. This
suggests the availability of mechanical heterogeneity and nonuniform formation of
units [-IV during their melting and accretion.

Starting from a depth of 2867 m the results of measurements and determinations
show the availability of the zone within which the rock properties greatly differ from
those of the overlying rocks. From this depth elastic anisotropy both by compression
and shear waves increases virtually linearly. The LAAA index rises as much. By
these indexes a zone stands out within which the stress state in the borehole vicinity is
heterogeneous due to strong anisotropy of elastic properties. The deviator of the stress
tensor will be of substantial value and spatial orientation of the tensor main
components will transfer as the variability of the angle w = 51-76° shows.

The values of 1133, 71213, D and y (Fig. 9.9) show a close relation to the value of
the diameter P, i.e. to the size of caverns in the borehole. This relation is most
conspicuous in indexes €133 and y;213. Interestingly, the depth difference between the
marks, where the most intense rise in elastic anisotropy by &;;33 and y;2;3 and the most
sharp increase in the cavern size P begin, is about 60 m. Thus, a prompt assessment of
the rock anisotropy will allow prediction of possible cavern and inrush formation.

In conclusion we will set forth the main tenets and implications from the above
material. From the outline of rocks from the SD-4 section it follows that the
homogeneous deep source which is typical of basalts provided their rather
homogeneous chemical composition. Distinctions between the rocks in units I-IV are
caused by different crystallization conditions and parameters of the subsequent stress-
strain state. The registered rock elastic anisotropy is a result of the prolonged stay
under stresses, i.e. most likely palaeostresses [Kozhevnikov, 1982].

The acoustopolariscopy results of SD-4 core allowed one to divide rocks into
rather isotropic, rocks with marked and strong anisotropy. Strongly anisotropic rocks
occur in the interval of 2867.8-3068 m and, probably, deeper. As a rule, they have a
pseudohexagonal symmetry. This suggests the availability of a great component of
tectonic stress. This component acts along the normal to the symmetry plane
determined by the acoustopolariscopy method. It is remarkable that the appearance
and visible structure of strongly anisotropic rocks do not allow one to distinguish
them from the rocks with weak and marked anisotropy.
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In rocks with marked anisotropy the rhombic type of elastic symmetry prevails
suggesting much the same influence of geostatic and tectonic stresses. If the
anisotropy indexes in rocks with marked anisotropy are higher than the average
values then the rock symmetry becomes pseudohexagonal. This allows one to state
that at these depths the tectonic component of the stress field begins to dominate over
the gravitation one. This predominance is especially great at depths of H = 2867-3068
m. Judging by the value of angle y the orientation of the stress tectonic component is
close to subhorizontal.

The relations between the matrix Vj; values for compression and shear waves for
this type of rocks showed that isotropic (weakly anisotropic) rocks have a
comparatively low Poisson's ratio — v = 0.18. During seismic investigations this index
can serve as a diagnostic sign for volcanic rocks of this type. The anisotropy
expressed by the relations between the compression wave velocities is closely
connected with that expressed through shear waves. But for this type of rocks
anisotropy of elastic properties is much better expressed in the difference between the
compression waves rather than the shear waves. Contrast zones are singled out by the
indexes of elastic anisotropy and linear acoustic anisotropic absorption in the SD-4
section (from the data available) in the 430, 886, 924, 1440, 2496 and 3000 m depth
vicinity, The presented geological column points to the change or contacts between
various rocks within these zones. A high index of LAAA has been fixed for the rocks
with the oriented mineralized cracks.

Starting with a depth of H = 2867 m the results of measurements and
determinations clearly show the availability of the zone within which the rock
properties differ radically from those in the overlying rocks. Within this zone the
stress state of the rocks is heterogeneous: the deviator of the stress tensor must be
great and the spatial orientation of the tensor's main components must (judging by the
value of y = 57-76°) transfer in space with depth.

Within the zone of cavern formation a close relation has been found between the
indexes of the rock elastic anisotropy and the value of the borehole transverse size P.
There is a shift in depth between the initial marks of the most intensive rise in elastic
anisotropy and a sharp increase in the sizes (section) of the borehole caverns. Such an
increase in the cavern section has been registered 60 m lower than the beginning of
the rock anisotropy rise. If a similar shift in depth is fixed in other boreholes, this will
allow one to propose a prompt method for forecasting zones of stability loss. To
assess the borehole stability exactly the elasticity constants of rocks have been
calculated.

The results reported in this work, on the whole, show the efficiency of the
acoustopolarization method for determining the availability of elastic anisotropy,
spatial arrangement of elastic symmetry elements, calculation of elasticity constants,
determination of a symmetry type and calculation of the stability of the borehole
drilled in an anisotropic rock mass. It is remarkable that unfavourable zones for the
borehole stability, that were preliminary revealed in the SD-4 section through the
assessment of the rock elastic anisotropy by shear waves, coincide in depth with the
ones determined from the above analysis. This suggests that an express method for an
assessment and forecast directly at boreholes can be proposed.
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10. ANISOTROPY OF ELASTIC PROPERTIES OF ROCK SAMPLES FROM
THE KOLA SUPERDEEP BOREHOLE (SD-3)

10.1. Section lithology

The Kola superdeep borehole (SD-3) has been laid in the north-eastern Baltic
shield in the junction area of ore-bearing Precambrian structures that are typical of
ancient platforms. It has penetrated all formations of the Proterozoic complexes and a
major part of the Archaean complex [Kozlowsky, 1987]. Investigations on the core
showed that in the borehole section one can observe metamorphism at prehnite-
pumpellyite to amphibolite facies
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Fig. 10.1. Geological column and core properties in the section of the Kola superdeep
borehole (SD-3).

1 - augite metadiabase with interlayers of pyroxene and picrite porphyrite; 2 - metaphyllite,
aleurolite with tuff interlayers; 3 - rhythmically layered metasandstone with subordinate
aleurolite and phyllite; 4 - actinolized metadiabase; 5 - dolomite, arkose metasandstone; 6 -
sericite schist; 7 - diabase; 8 - dolomite, polymict metasandstone; 9 - wehrlite; 10 - diabase
porphyrite, schist after them; 11 - metadiabase; 12 - biotite-plagioclase gneiss with high-
alumina minerals; 13 - biotite-plagioclase gneiss with amphibole, epidote, sphene; 14 -
magnetite-amphibole schist; 15 - gabbro-diabase, 16 - biotite-plagioclase and sphene, biotite-
amphibole-plagioclase gneiss, schist.

a - distribution of density values p in the section. 1 - unit values measured on separate core
samples; 2 - mean interval values; 3 - linear tendency of alteration p with depth.

b - scattering of unit values of longitudinal wave propagation velocity V,, measured on core
samples in the air-dry state. 1 -samples of gneiss-granite composition; 2 - amphibole-bearing
samples; 3 - boundary line of minimum values; 4 - boundary line of maximum values.

The Proterozoic complex (H = 9-6842 m) is mainly presented by metadiabase,
gabbro-diabase, metatuff, serpentine, metaaleurolite, metasandstone, porphyrite and
schist, Fig. 10.1.

Metadiabase is composed of monoclinic pyroxene, augite (50-40%) and
plagioclase (30-20%). The rest are hornblende, quartz, chlorite, epidote etc. Gabbro-
diabase contains plagioclase, (60-20%), monoclinic pyroxene (60-20%), chlorite,
saussurite and carbonatite (to 30%). Tuff is mainly composed of volcanic glass
fragments, diabase, albite, plagioclase and quartz. Serpentinite contains serpentine,
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chlorite (60%), talc (20%), tremolite (10%) etc. Fragments in metaaleurolite and
metasandstone are represented mainly by quartz, plagioclase microcline; fragments of
amphibole, pyroxene and garnet are scarce. Andesite-dacite porphyrite contains
plagioclase, quartz, albite-oligoclase, sericite, chlorite etc. Schists are represented by
plagioclase (30-50%), hornblende (50-60%) and, in small quantities, by magnetite and
ilmenite.

Among the Archaean rocks (H > 6842 m) biotite-plagioclase gneisses, granites,
pegmatites, shady migmatites, amphibolites, epidote-biotite schists are most common.
Biotite-plagioclase gneisses, granites, pegmatites are composed of biotite (20-30%),
sometimes partially substituted by muscovite, quartz (30-40%), plagioclase (about
30%). In pegmatoid rocks biotite is, as a rule, substituted by microcline and
muscovite. Varieties enriched in garnet are present. In epidote-biotite schists quartz is
displaced by epidote and pyroxene. Compositionally, shady migmatites are close to
biotite-plagioclase gneisses. The composition of amphibolites is ordinary: hornblende
about 70%, plagioclase 30% and some biotite. The mineral composition of
amphibolite schists is close to that of amphibolite.

The Pechenga complex [Orlov & Laverov, 1998] is divided into the Matert (mt -
9-1059 m), Zdanov (zd - 1059-2805 m), Zapolyarny (zp — 2805-4673 m),
Luchlompolo (1z - 4673-4884 m), Pirttijarvi (pt - 4884-5619 m), Kuvernerinjoki (kw -
5619-5717 m) Majarvi (ma - 5717-6835 m) and Televi (tlw — 6835-6842 m)
formations (Fig. 10.1).

The Archaean complex is represented by unit I composed of gneisses with high
alumina minerals (HAM) (6842-7622 m), unit Il composed of shady migmatites,
gneisses and amphibolites (7622-9456 m), unit III composed of two-mica gneisses
with fibrolite (9456-9573 m), unit IV composed of shady migmatites, gneisses and
amphibolites (9573-10144 m), unit V composed of two-mica gneisses with fibrolite
(10144-10273 m), unit VI composed of shady migmatites, gneisses and amphibolites
(10278-10448 m), unit VII composed of gneisses with HAM (10448-10601 m), unit
VIII composed of shady migmatites, amphibole gneisses and amphibolites (10601-
11411 m), unit IX composed of biotite-plagioclase gneisses with HAM (11411-11708
m), unit X composed of biotite- plagioclase gneisses and schists (11708-12261 m).

As follows from the above, the SD-3 section is represented by a large variety of
rocks of ultrabasic to acid composition, different grade of reworking, metamorphism,
structural and textural distinctions. This suggests different conditions of their genesis
and possible variations in elastic properties and anisotropy.

10.2. Elastic properties and anisotropy of Proterozoic and Archaean rocks

Attachment 5 presents summary data on determined density p, elastic wave
velocities arranged in accordance with the normalized matrix V,.jp (5.5) and index of

linear acoustic anisotropic absorption (LAAA) effect D. As a rule, when sawing a
sample its sides were oriented along the foliation (schistosity) and linearity. In the
notes to the Attachment 5 one can find the cases when the side orientation does not
correlate with the elastic symmetry elements of the sample medium. The sample order
in Attachment 5 is determined by the depth of their excavation H. Attachment 6 gives
calculated constants of elasticity C,s (see formulas (6.6)-(6.11) and anisotropy
indexes &1133, €2233, Y1213, V1223, At, (see formulas (9.2)-(9.6)) for the same samples. A
type of elastic symmetry was determined by the index Ar.
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Fig. 10.2. Acoustopolarigrams of SD-3 core samples.

A: a - plagioclase granite with amphibole (sample 24996S); b - epidote-biotite-
plagioclase gneiss (sample 28184S); ¢ - biotite-plagioclase gneiss (sample 30020); d -
staurolite-andalusite-sillimanite-two-mica gneiss (sample 24256S).

B: a -amphibole-plagioclase schist (sample 19131S); b - amphibole-plagioclase schist
with chlorite (sample 21720); ¢ - amphibole-plagioclase schist with chlorite (sample
21722); d - talc-phlogopite-tremolite schist (sample 26716S).

Figures 10.2-10.4 show typical acoustopolarigrams for the samples of biotite-
plagioclase gneisses, granites, schists, amphibolites, apogabbro, hornblendite and
porphyrite. Judging by the acoustopolarigrams (Fig. 10.2), elastic anisotropy of
biotite-plagioclase gneisses and granites is very conspicuous. Acoustopolarigrams of
samples 24996S and 28184S point to the symmetry rhombic type, while those of
samples 30020, 24256S point to the pseudohexagonal type. In all cases LAAA is
manifested along individual directions in the samples. This effect is very strong in
staurolite-andalusite-sillimanite-two-mica gneiss (sample 24256S). Using the
diagrams, Fig. 2.5, one can see that since the orientation of the largest diameter of the
VP diagrams on sides (1-1') and (2-2") is mutual, a plane model (Fig. 2.5, a) is a basis
for LAAA manifestation.

Unlike gneisses and granites some schists have acoustopolarigrams without
LAAA manifestation (Fig. 10.2) and with a shape close to the classical one (Fig. 1.4).
Talc-phlogopite-tremolite schist (sample 26716S) has some distinctions. But a large
number of schist samples have acoustopolarigrams that exhibit strong LAAA
influence (Fig. 10.3). The model of LAAA manifestation may be of both - plane
(samples 26715S, 35924) and linear-plane types (samples 19402S, 27227S). As
shown by the acoustopolarigrams, the range of LAAA manifestation in the
amphibolite samples is rather wide (Fig. 10.3, 10.4). The amphibolite
acoustopolarigrams, as a rule, suggest influence of three factors in various
combinations and degree - elastic anisotropy, LAAA and heterogeneities. For
instance, the acoustopolarigrams of samples 24947, 35426 were most influenced by
the first factor. The acoustopolarigrams of samples 24788S, 27026, 42413-1, 42918-1
show the influence of the first and, to a large extent, the second factors. All the three
factors influenced the shape of the acoustopolarigrams for samples 31272 (side 3-3")
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and 43553 (side 2-2"). According to the orientation of the largest diameters of the VP
diagrams, samples 27026, 31272, 42413-1, 43553 show a plane model of LAAA,
while samples 24788S, 42918-1 show a linear model (Fig. 2.5).

Fig. 10.3. Acoustopolarigrams of SD-3 core samples.

A: a - amphibole-plagioclase schist with biotite (sample 19402S); b - talc-phlogopite-
tremolite schist (sample .26715S); c¢ - epidote-biotite-amphibole-plagioclase
crystalloschist (sample 27227S); d - apohyperbasic schist (sample .35924).

B: a -clinopyroxene amphibolite (sample 24788S); b - amphibolite with sphene (sample
24947); c¢ - cummingtonite amphibolite (sample 27026); d - epidote-hornblende
amphibolite (sample 31272).

Figure 10.4 shows acoustopolarigrams of fine-grained apogabbro, hornblendite,
apogabbroic porphyrite samples. All the mentioned samples are also hornblende
amphibolites. The acoustopolarigrams for the first three samples suggest strong
LAAA and the influence of heterogeneities. Samples 31587, 43579 show a plane
model of LAAA, while hornblendite (sample 38846) shows a linear one. Judging by
the acoustopolarigrams, elastic anisotropy and LAAA in the porphyrite sample are
weak. It is interesting to note that this sample has, besides low values of anisotropy
factors, very high compression and shear wave velocities for such depths (H = 11430
m) (Attachment 5).

On the whole, the shapes of VP acoustopolarigrams for the SD-3 section are
typical of strongly anisotropic rocks of mainly rhombic symmetry. As a rule,
projections of symmetry elements are easily distinguished on all three sides of the
sample. The acoustopolarigrams show that the anisotropy of rocks from SD-3 is much
higher than that of rocks from SD-4 and from Voche-Lambina deposit area
[Gorbatsevich, 1995]. The VP shapes of some acoustopolarigrams for the rocks from
SD-3 differ radically from those for the rocks from SD-4 and Voche-Lambina deposit
area [Gorbatsevich 1995]. Diagrams for samples 24256S, 26715S, 272278, 24788S,
27026, 42918-1 in Figs 10.2-10.4 provide examples of this difference.
Acoustopolarigrams for samples 21720, 34876, 43579 etc. belong to the same group.
All of them are characterized by a very high LAAA manifested on one, or, more
often, two or three sample sides. The observed shapes of acoustopolarigrams are like
calculated circle diagrams, Fig. 2.2, 2.5.
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Fig. 10.4. Acoustopolarigrams of SD-3 core samples.

A: a - amphibolite with sphene (sample 35426); b - epidote-biotite hornblende
amphibolite (sample 42413-1); c - epidote-biotite hornblende amphibolite (sample 42918-
1); d - amphibolite with sphene (sample 43553).

B: a - fine granular apogabbro (sample 31587); b — fine granular apogabbro (sample
43579); c - biotite hornblende amphibolite, hornblendite (sample 38846); d -
apogabbroic porphyrite (sample 41487).

An analysis of the data in Attachment 5 shows that in SD-3 rock samples the
LAAA effect D varies in the range of all possible values, from D = 0.0 (sample
24947) to D = 0.95 (side 2-2', sample 31587). As shown on the model media (see
point 2.4), LAAA is a non-elastic effect that is slightly related to elasticity indexes -
compression and shear wave velocities.

The numerical values in Attachment 5 suggest that rocks from SD-3 as well as
those taken at the surface or from SD-4 show a close correlation between the
maximum velocities of compression Vyiim and shear Vg;m waves in matrixes Vj;, Fig.
10.5.

Vsjim: 0-56Vpiim (101)

with the mutual correlation factors » = 0.84.

These relationships to the same extent are true for the three distinguished rock
groups: schists, amphibolites and biotite gneisses (granites). On the whole, it is
revealed that the largest velocities of compression and shear waves are characteristic
of schists, to a lesser extent to amphibolites and still to a lesser extent to biotite
gneisses and granites.
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An arrangement of the unit values
of the factors 1133, y1223 for the three
types of SD-3 rocks is given in Fig.
10.6 in the diagram drawn from the
data presented in Attachment 6. A
general scattering of the points in the
diagram does not allow one to consider
anisotropy factors for compression
€1133 and shear y,,,3 waves to be closely
related. By the mode of their
arrangement two groups of points and,
accordingly two lines - I and II, can be
distinguished in a qualitative sense.
The lines reflect a proportionality of
the relationship between the values
71223 and €133 in these groups.

For the first group (line I),

71223~ 0.8¢€1133.

For the second group (line 1I),

71223=0.31e1133.
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Fig. 10.5. Relation between the maximum

values of compression (Vyim) and shear (Viim)
wave velocities in the velocity V; matrixes for
rocks from the SD-3 section.

(10.2)

(10.3)

As follows from the relationship (10.2), anisotropy of the shear wave velocities is

close to that of the
compression waves for the
first group of points. Rocks
combined in the group of
points along line I, have
characteristics 91223,
close to the same
characteristics of  rocks
from the Voche-Lambina
deposit area [Gorbatsevich,
1995]. As to the second
group of points, here
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anisotropy of shear wave
velocities is much less than
that of compression waves.
In this case equation (10.3)
reflects the relationship

close to that observed

E'11(.':3

Fig. 10.6. Distribution of unit values of anisotropy factors
Y1223 and &4433 for rocks from the SD-3 section.
1 - schist, 2 - amphibolite, 3 - biotite gneiss (granite).

before for volcanic rocks from the SD-4 section (see point 9.3).

It is known that the geological section of the Kola superdeep borehole SD-3 is
characterized by alteration of sedimentary and volcanic units [Kozlovsky, 1987]. This
is likely to be the reason for the fact that one rock type corresponds to the relation

(10.2), while the other one - to the

relation (10.3). Accordingly, the type of

relationship between the factors ;223 and 1133 can be used for separating volcanic
rocks from rocks of other types. But this conclusion is tentative. A final conclusion
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may be drawn after detailed petrographical and petrological investigation of the first
and second rock groups.

The data from Attachment 6 support the conclusion (drawn before when
analysing the acoustopolarigrams) that most of the measured rocks are highly
anisotropic and pertain to the rhombic type of symmetry (in Attachment 6 rocks of
pseudohexagonal symmetry are marked G and those of rhombic symmetry - R). Only
10 of 58 samples belong to the pseudohexagonal symmetry type, 6 of them (samples
18994, 217228, 242218, 24256S, 25386, 27262) representing a rather interesting
variety of the transverse-isotropic or pseudohexagonal type - the compression wave
velocity is maximum in the symmetry axis direction and minimum in the plane
direction. The system of relations V; (see Eq. (6.2)) that are true for transverse-
isotropic media represents a set of plane-parallel layers (type I) with discriminate
properties [Lyakhovsky, Nevsky, 1970; Lyakhovitsky, 1988].

In the SD-3 rocks of type II in the V}; matrix, the following relations are observed
(see Eq. (63)) Vii = Va < Vi, Vio = Vo < Viz = V31 = Voz = Vas
Conventionally, this type (type II) can be conceived of as a bunch of parallel
cylindrical rods that are in an isotropic medium different from the rods in elastic
properties. The symmetry axis of an endless order will be situated along the rod axes.
A model of such medium is given in Fig. 6.3. The origin pattern of type I elastic
symmetry in the stress field seems to be quite logic, but the origin of type II symmetry
is not quite clear so far. It may be a consequence of some metamorphic

[Kozhevnikov, 1982; Robin, 1979,
Eliseev, 1959], or  metasomatic :#g?a Depth, m
processes [Vernon, 1980]. T
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anisotropy at all. Observations on elastic

characteristics of the SD-3 core allowed Fig. 10.7. Vertical velocity section along

revealing an effect called the effect of
rock disintegration that is directly
related to anisotropy of mineral grains. It
is manifested during the core release
from geostatic stresses in the process of
drilling and core recovery [Gorbatsevich
& Medvedev; 1986; Gorbatsevich,
2003].

For instance, systematic laboratory

the SD-3 borehole [Sharov, 1997]. For the
legend to the geological column see Fig.
10.1.

1 - vertical seismic profiling method (VSP);
2 - acoustic logging method (AL); 3 -
calculation method (CM) applied for rocks
of gneiss-granite composition; 4 -
calculation method for amphibole-bearing
rocks; 5 - calculation method, average
confidence bounds for intervals.
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measurements of compression V), and shear V; wave velocities along the core axis
showed [Kozlovsky, 1987] that the maximum and minimum values of V), and V, tend
to decrease with depth. The measurements, Fig. 10.7, showed that there is virtually no
difference in the V), values measured on the core extracted from the near-surface zone
and those derived in the borehole by acoustic logging (AL). But the difference
between the V), lab measurements made on the core extracted from the 9-11 km depths
and those obtained by AL at the same depths is 200% and more, Fig. 10.1b.

In polycrystalline rocks of a massif structure the disintegration effect of rocks
during their release from geostatic and other stresses should be most conspicuous
[Goryainov, et al. 1992]. Therefore we have measured compression wave velocities
V, in the Archaean granite-gneiss fragments of the SD-3 core. Biotite-plagioclase
gneisses, granites and migmatites contain at least three main types of strongly
anisotropic minerals: micas (biotite, muscovite etc.), quartz and plagioclase. In Fig.
10.8 are given measured V), (in air-dry conditions) as a factor of depth /.

As this Figure suggests, the tendency for a decrease of compression wave
velocities in the released core is pronounced. One may consider that the core extracted
from a depth of H = 11 km with the registered value of V), = 1.2 km/s experiences a
release from geostatic stresses exceeding o, = 300 MPa. Deformations rising under
such release in every anisotropic mineral grain cause a break in initially strong
intergranular contacts,
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ultrasound propagation way. oLy o
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(Attachments 5, 6) through
the SD-3 section, Fig. 10.9 a, b. The most representative part of the plot shows that
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anisotropy of rocks increases rather smoothly from 5 to 8 km depths, and then it
decreases sharply to a 12 km depth. Schists and amphibolites are most strongly
anisotropic rocks. By the data from [Gorbatsevich et al., 2002] a dashed line on the
plot represents a general envelope of the largest size P (diameter) of the caverns in the
borehole.

A general review of the plot data allows a conclusion that at 7.0-9.0 km depths
rocks with strictly oriented structures occur. The proportion of these rocks at depths
over 9 km decreases dramatically. At these depths the proportion of rocks in which
minerals are arranged with mutually incompatible orientation increases. So the core
extracted from a depth over 9 km will be subjected to disintegration to a greater
extent. This is supported by experimental data, Figs. 10.1, 10.8.
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Fig. 10.9. Distribution of unit values of index B, factors &133 and Ap of elastic anisotropy of the
rock samples along the SD-3 section [Gorbatsevich et al., 2002]. For the legend to the
geological column see Fig. 5.

a - index B. 1 - metadiabase, peridotite; 2 - amphibolite, schist; 3 - gneiss, granite, migmatite; 4
- phyllite, tuff; 5 - metasandstone, metaaleurolite; 6 - porphyrite; 7 - average interval cross size
of the borehole.

b - factor &1133. 1 - schist; 2 - amphibolite; 3 - biotite gneiss, granite; 4 - phyllite; 5 - envelope of
the cavern greatest size P; 6 - boundary line &433 = 0.05.

The data (a, b) have been obtained on the samples in lab conditions.

¢ - factor Ap and index B (in %). The data (c) have been determined under in situ conditions.

Strong elastic anisotropy has been also registered by modelled in sifu conditions. The
alterations of compression (V),), shear wave velocities (V) and density (p) were
registered in some samples by increasing confining pressure (temperature) up to 600
MPa and up to 600° C. The experiments were made in a multi-anvil apparatus by
Prof. H. Kern at the University of Kiel, Germany [Kern et al., 1997] and in Prof. N.
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Christensen's lab at Wisconsin University, USA [Christensen, 1985]. The results of
the experiments [Gorbatsevich et al., 2002] are shown in Fig. 10.9c. Greater
anisotropy measured on samples in dry air and in sifu conditions, expressed by the
factors Ap, B, €1133, corresponds to greater cavernosity P of the borehole, Fig. 10.9.
This Figure shows that the caverns' largest size P = 0.6 m is observed at a depth of ~9
km where most anisotropic rocks occur.

Thus, with these two examples, one may state that with respect to SD-3 and SD-
4, the increased cavernosity of the boreholes drilled in crystalline rocks, as a rule, is
related to elastic anisotropy of rocks.

Based on the data from Attachment 5, Fig. 10.10 gives unit values D of the
LAAA for the three rock types - schists, amphibolites, biotite-plagioclase gneisses
and granites vs depth H. Scattering of points on the plot, on the whole, is similar to
the scattering of unit values of the factor ¢33 in Fig. 10.9b. As a rule, amphibolites
show the greatest D values. The average level of D for all rocks is rather high - D =
0.4-0.5. This suggests that when shear waves propagate through such a massif, waves
with the polarization vector oriented along the normal to the rock structure will be
intensely absorbed.

Let us consider the main results of the investigation into elastic properties and
anisotropy of rocks from the SD-3 section. First, the rocks are characterized by very
high anisotropy mainly of rhombic symmetry (Attachment 6). For instance,
cummingtonite-hornblende amphibolite (sample 02 04 08 03 A
28744A) has 33 = 1.55. Accordingly, in its —
matrix )70 (Attachment 5) the compression wave  4o- +

g +
velocity is 2.54 times larger than that of the shear {* ’
wave. It is significant that for the side (3-3') V3, = sol"s
2.05 km/s, V3= 2.01 km/s, i.e. the registered shear
wave velocities virtually do not differ from those 1 .
of compression waves. If we consider this sample +
to be isotropic a priory, then we will obtain a <],
negative Poisson's ratio for side 3-3'. There are . - o,
rather many such samples in the SD-3 section. .04 . o1,

Unlike the samples from SD-4, the samples
from SD-3, as a rule, have pronounced schistosity
and linearity. The orientation of the symmetry Fig. 10.10. Distribution of unit
elements revealed by acoustopolariscopy mainly  Vvalues D - LAAA index for rocks
coincides with visual orientations of schistosity [rom the SD-3 section in the

. . . . . interval H = 5.5-12 km.
agd hm?arlty. Some disagreement was noticed in 4 schist, 2 — amphibolite, 3 —
migmatized rocks. biotite gneiss (granites).

During a long geological time and deformation

stages including the evolution of the main factors -

pressure, temperature etc., rocks from SD-3 as well as those from Voche Lambina
deposit area [Gorbatsevich, 1995] experienced repeated reconstruction,
recrystallization and acquired a thermodynamically stable form and orientation of
crystalline grains (see Fig. 8.6). These conditions are the reason for very strong
anisotropy of rocks from SD-3.

The SD-3 core recovered from great depths experiences considerable
disintegration caused by its release from appreciable geostatic stresses. This results in
the appearance of a large number of intergranular microcracks. The core
disintegration is most pronounced in polycrystalline rocks. It causes compression and
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shear wave velocities to smoothly decrease, porosity to rise and strength to reduce
[Gorbatsevich, 2003]. As in the case with the SD-4 rocks, greater anisotropy of rocks
from SD-3 corresponds to greater cavernosity of the borehole. After S.G. Lekhnitsky
[1977] in the vicinity of a round hole in a homogeneous at infinity stress field, the
shape of isolines for ultimate strains causing release may take a form of a two- or
four-petal rosette depending on the syngony type of an anisotropic medium. The SD-3
cross-sections of caverns have the form of an ellipse with sharp angles and the
outlines close to a circle [Kozlovsky, 1987]. In this connection the data obtained from
SD-3 and SD-4 show that a failure of superdeep boreholes is caused not by
heterogeneity of a stress field but by considerable anisotropy of the rock elastic
properties.

Rocks from SD-3 are characterized by high LAAA which manifests itself in the
form of plane and linear models [Gorbatsevich, 1990] as well as in mixed forms. This
effect is most conspicuous in amphibolites. As shear waves propagate in media with a
high LAAA, a wave component with the polarization vector directed along the normal
to the oriented structural elements is intensely absorbed. In this connection it might be
interesting to trace the propagation of seismic waves in a massif composed of
amphibolites and to compare the amplitudes of differently polarized transverse waves
S1 and Ss.

10.4. Comparative determined anisotropy parameters of rocks from the SD-3
and SD-4 sections

Complete results of experimental measurements of rock anisotropy for SD-4 and
SD-3 are given in Attachments 2-6. With the data on the Voche-Lambina deposit area
[Gorbatsevich, 1995] they present more than 3000 units and derived parameters for
104 rock specimens. Due to the data abundance it is expedient to compare them in
most common indexes: age of rocks, coupling coefficients K and M between the
parameters Viim, Vpiim, Y1223, €1133, @ number of isotropic, anisotropic, strongly
anisotropic rocks, rocks of rhombic and pseudohexagonal symmetries and a number
of linear anisotropy with a small or large index D. These indexes are given in Table
10.1. In the Table, when assessing a degree of anisotropy, rocks have been divided
with regard to the below limits (6.12):

Isotropic medium - 0 < ;33 < 0.05,

Weakly anisotropic medium - 0.05 < g;;33 <0.15,

Strongly anisotropic medium - £33 > 0.15.

By the LAAA degree rocks have been divided into 3 groups: without
manifestation of the effect - D <0.1, with an average degree - 0.1 < D < 0.5, with a
high degree - D > 0.5.

Thus, Table 10.1 gives the parameters of rocks of three geological ages: the
Silurian, the Proterozoic and the Archaecan. Rocks from SD-4 represent
metamorphism at greenschist facies, while rocks from the Voche Lambina deposit
area (VLDA) and SD-3 - mainly at amphibolite facies. Despite a different age, their
coefficients K do not differ greatly. On the contrary, the difference in coefficient M
between the Silurian volcanic rocks (SD-4) and, most likely, the Archaean
sedimentary rocks is great. As shown in the previous section, on the basis of
coefficient M, separating of volcanic rocks from rocks of other types is possible.

Elastic isotropic rocks occur only in the SD-4 section, they account for 56% of
the total number. A smaller group (28%) is represented by weakly anisotropic rocks
and still a smaller one - by strongly anisotropic rocks. Most samples of Proterozoic
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(SD-3) and Archaean (VLDA, SD-3) rocks are included in the group of strongly
anisotropic rocks (80-93%). Isotropic rocks are missing among them. Most of weakly
anisotropic rocks (20%) are represented by Proterozoic rocks (SD-3), the least amount
(7%) - by Archaean rocks (SD-3). Independent of a sampling point and age, rocks of
rhombic symmetry dominate, among the SD-4 rocks they account for 60%. Much the
same amount is among the rocks from the VLDA and SD-3 (the Proterozoic). Among
the SD-3 Archaean rocks their proportion is even higher - 88%. In all places, rocks of
pseudohexagonal symmetry account for less than 40% and among the Archaean rocks
from SD-3 - only 12%.

The above data reject the commonly encountered in literature [Batugin & Nirenburg,
1972; Nevsky, 1974; Thomsen, 1986] conclusion that weakly anisotropic rocks of
transverse-isotropic symmetry dominate at least in the upper Earth crust. The data
from Table 10.1 allow the conclusion that the presented rocks (from 55% to 89%)
manifest the effect of linear anisotropic absorption of a marked or high degree.
Moreover, the amount of rocks with D > 0.5 among the SD-3 Archaean rocks is
immensely high - 51%.

Table 10.1
Experimentally determined anisotropy parameters of rocks from the SD-4 and
SD-3 sections and Voche Lambina deposit area [ Gorbatsevich, 1995].

Ural Voche Kola Borehole (SD-3)
Borehole  |Lambina
(SD-4) deposit
area
Value of Age Immenov | Archaean | Proterozoic | Archaean
Coupling formation,
coefficient Silurian
between Viijm=KVpiim 0.57 0.63 0.56 0.56
parameters
Y1223 = M81133 0.29 0.66 M1 =0.31 M2 =0.8
Number of Total 25 21 15 43
rocks
Of these Isotropic 14(56%) - - -
Weakly anisotropic 7(28%) 3(14%) 3 (20%) 3 (7%)
Highly anisotropic 4(16%) 18(86%) | 12(80%) | 40 (93%)
Of pseudohexagonal 10(40%) 8(38%) 5(33%) 5(12%)
symmetry
Of rhombic 15(60%) | 13(62%) 10(67%) 38(88%)
symmetry-
With D> 0.1 14(56%) | 16(59%) 4(57%) 14(38%)
With D > 0.5 - - 1(13%) 19(51%)

As follows from the above, in the Ural Superdeep section down to a depth of 3.07

km mainly isotropic and weakly anisotropic rocks occur, which after their generation
underwent rather little change and transformation. The other end of the elastic
property spectrum is represented by SD-3 Archaean rocks. During their evolution they
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underwent a number of alterations and transformations including stages of progressive
and regressive metamorphism, migmatization and other processes. They resulted in
dominating of strongly anisotropic rocks of rhombic symmetry and manifestation of
high LAAA.

The data from the Table allow the conclusion that the older the rock and the
higher metamorphism facies, the larger amount of strongly anisotropic rocks with a
high LAAA in the given massif.
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CONCLUSION

At present great interest in elastic anisotropy parameters of natural and artificial
media is being shown. On the one hand, it is due to the necessity of developing new
materials that posses the greatest elasticity and strength in the desired direction. On
the other hand, investigations indicate that natural materials, in particular minerals
and rocks, have the properties characterized by various symmetry groups, including
the lowest ones, and by high degree of anisotropy. Great in volume rock masses, up to
the earth crust parts, can be strongly anisotropic. These peculiarities of great
geological formations hinder their study by seismic methods.

Presented here the acoustopolariscopy method enables obtaining all the
parameters that are necessary for the characteristics of the sample material anisotropy.
This method is a combination of dynamic and kinematic methods. To implement the
method we have designed acoustopolariscopes and transducers that can radiate and
receive purely shear linearly-polarized waves. They allow one to make highly
accurate measurements, including those on samples up to 1 sm. The latest version of
this device permits making measurements automatically with data retention and their
processing on the computer. A computer programme allows one to construct
acoustopolarigrams, to distinguish symmetry element projections on them and to print
out the data.

According to the measurement procedure by acoustopolarization diagrams
obtained at crossed polarization vectors one can determine the number, orientation
and mutual arrangement of the medium symmetry elements. An analysis of the
number and spatial characteristics of these elements permits drawing a conclusion
about the medium symmetry type without determining compression and shear wave
velocities in the sample.

The shape of the acoustopolarigram obtained at the parallel polarization vectors
allows determining the presence and degree of the linear acoustic anisotropic
absorption (LAAA) effect and assess heterogeneity of the sample medium. The
detection of the LAAA effect implies the presence of the system of parallel
heterogeneities in the specimen under study, for instance, the substance layers with
different acoustic properties or cracks. The increased amplitudes detected in the
sample at crossed polarization vectors at the points lying in the projection lines of the
elastic symmetry elements point to the presence of the shear wave depolarization
(SWD) effect and, accordingly, to the different orientation of the symmetry elements
in the material layers or grains.

At the final stage to calculate a full set of the elasticity constants C,p in
accordance with the revealed symmetry elements and in additional directions,
compression and shear wave velocities are measured. The anisotropy factors obtained
from the velocity values allow one to distinguish weakly and highly anisotropic
media. The analysis of the relationship among the velocity values measured in the
direction of the elastic symmetry elements allows, in addition to the determinations
made by the acoustopolarigrams, corroboration of the results for the symmetry type
diagnosis.

Theoretical grounds for the acoustopolarization method have been developed
only for a simple model of transverse isotropic medium. But, as the measurement
practice showed, the mathematical expressions we have suggested are representative
of the shear wave propagation in more complicated media up to the rhombic
symmetry ones. The acoustopolarigrams for the crystals of quartz, orthoclase,
microcline show the feasibility of the obtained experimental results for analysing the
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number of the elastic symmetry elements of trigonal, monoclinic, triclinic etc.
symmetry media.

Our observations and the existing analogy in the field of optic phenomena
allowed suggestion of the theoretical grounds for the LAAA effect and development
of its two main models - plane and linear ones. Similarly the origin mechanism of the
shear wave depolarization effect in anisotropic heterogeneous media has been
revealed.

Interesting new results have been obtained when conducting acoustopolariscopy
of rock forming mineral samples. Using analcite, halite, garnet and pyrite samples we
have showed that unlike optic methods acoustopolariscopy permits determination of
spatial arrangement of the elastic symmetry elements in minerals of cubic syngony.
All these sample exhibited a rather weak LAAA effect.

The measurements on the samples of medium syngony (apatite, quartz,
nepheline, tourmaline) showed the dependence of some parameters on the frequency
of the sounding waves. For instance, elastic properties of apatite samples at the
sounding frequency of 2.67 MHz acquire an orthorhombic symmetry type. This
mineral samples have not exhibited great LAAA. Nepheline is virtually transverse
isotropic medium. In nepheline samples at low frequencies (fy = 0.78-1.26 MHz) the
LAAA index may reach medium and great values.

The elastic symmetry class of quartz differs from the crystallographic symmetry
class determined by its optic properties. This is indicated, for instance, by
determination of elasticity parameters of a quartz sample which corroborate the
difference in elastic symmetry orientation determined by optic and elastic properties.

Tourmaline samples displayed two effects at the same time - LAAA and SWD.
At one frequencies the LAAA linear type is exhibited, at others - the plane type. It
should be noted that also in optics tourmaline is noted for a strong manifestation of
the pleochroism effect.

The LAAA effect is conspicuous in minerals of low syngony, except for nephrite.
The highest values of LAAA have been detected in such minerals as amphibole,
microcline and orthoclase. Some minerals exhibit a clear dependence of LAAA
manifestation and type on the wave frequency. For instance, in microcline, as well as
in orthoclase, at one frequency the greatest absorption occurs on structural elements
of one cohesion, at the other frequency - on the elements of another cohesion. A
comparatively similar absorption on both elements occurs at f, = 1.26 MHz.
Accordingly, as the frequency changes, the type of LAAA manifestation changes, too.
For instance, when the absorption from one system of structural elements prevails, a
plane type will be detected. At the mutual and equal influence of two orthogonal
systems of cohesion a linear type will be registered. This observation suggests a
different step (stage) in cohesion systems in these silicate minerals.

The obtained Vj; values in mineral samples, on the whole, agree with the
reference data. But the values of quartz elasticity constants given in the references
have been measured along the crystallographic axes and do not reflect the greatest and
least elasticity values for this mineral.

A rather large number of samples (25 specimens) of rocks from the Ural
Superdeep Borehole (SD-4) have been analysed by the acoustopolariscopy method.
Relatively young Silurian volcanic rocks from the borehole that have experienced
comparatively few changes are characterized by the green-schist facies of
metamorphism. The measurement results allowed subdividing the rocks (andesite
basalt, basalt, tuff, and tuffite) into comparatively isotropic (56%), weakly anisotropic
(28%) and strongly anisotropic (16%). Strongly anisotropic rocks occur at a depth of
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2867 m and below. As a rule, they are of pseudohexagonal symmetry. The axis of
elastic symmetry of strongly anisotropic rocks is aligned almost horizontally. Thus,
one may assume that substantial horizontal tectonic stresses acted at a depth of 2867
m and below. Among weakly anisotropic rocks rhombic symmetry predominates
(60%), suggesting about the same influence of geostatic and tectonic stresses.

It 1s significant that the appearance and visible structure of strongly anisotropic
rocks do not allow distinguishing them from isotropic and weakly anisotropic ones.
As has been revealed, isotropic (weakly anisotropic) rocks from SD-4 have a rather
low Poisson ratio. This index for volcanic rocks of this type can serve as a diagnostic
sign during seismic survey. Anisotropy expressed by relations between the
compression wave velocities is rather closely connected with that for shear waves.
But for the rocks from SD-4 anisotropy of elastic properties is much better registered
with shear waves.

The index of linear acoustic anisotropic absorption effect is the highest in
strongly anisotropic SD-4 rocks, but on the whole, LAAA is observed in 57% of the
samples. Rocks with oriented mineralized cracks show high LAAA. Contrast zones
have been distinguished by the indexes of anisotropy and LAAA in the vicinity of
430, 886, 924, 1440, 2496 and 3000 m depths. The geological column points to
interlayers or contacts between different rocks within those zones.

A great increase in elastic anisotropy of SD-4 rocks begins from a depth of 2867
m; the zone of intensive cavern formation begins 60 m below this depth. Within this
zone the cross dimensions of the borehole become three times larger than its nominal
diameter. A close relation between the rock anisotropy and the borehole cross
dimension has been found. The discovered correlation provides a basis for developing
an efficient method for prediction of stability loss zones in boreholes and workings
according to the measurement results for anisotropy parameters.

The second group of rocks is the largest (58 samples). It has been taken from the
Kola Superdeep Borehole (SD-3) core. It presents Proterozoic and Archaean rocks
that differ in mineral composition: dolomite, phyllite, metasandstone, amphibole-
plagioclase schist, amphibole, biotite gneiss, migmatite, apogabbro, apogabbro
porphyrite. Acoustopolarization observations showed a total absence of isotropic
samples in the group — one can see the symmetry element projections on all three
sides of virtually every sample. As a rule, the observations point to the influence of
three factors that occur in different combinations and varying degrees: elastic
anisotropy, linear anisotropic absorption effect and heterogeneities. The shape of the
rock acoustopolarigrams is typical of strongly anisotropic rocks of mainly rhombic
symmetry. The VP shape of some acoustopolarigrams is distinctly different from the
some diagrams for the SD-4 rocks. They are characterized by a high degree of LAAA
at one, three, or more often for two sample sides. The analysis showed that linear,
plane or mixed models are observed at a high degree of LAAA. The distribution of
LAAA unit values and birefringence factor for all SD-3 rocks showed that the effects
of linear anisotropic absorption and elastic anisotropy are exhibited independently of
each other. Among the SD-3 rocks 89% of the samples showed the LAAA effect. Of
them 51% had D > 0.5.

Determinations of the velocity matrix type in the SD-3 samples showed a
predominance of rocks with rhombic symmetry both for Proterozoic (67%) and
Archaean (88%) rocks. In the same rock groups strongly anisotropic rocks account for
80% and 93% accordingly. Of 58 samples, only 10 have pseudohexagonal symmetry
type, 6 of which representing a rather interesting variety — the compression wave
velocity was maximum in the symmetry axis direction and minimum in the plane
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direction. By convention, this type can be represented as a bundle of parallel cylindric
rods that are in an isotropic medium differing in elastic properties from the rods.

As our observations showed, the rock disintegration effect was conspicuous
during the SD-3 core recovery from the 6-12 km depths. The essence of the
disintegration effect is the following: at relatively great depths polycrystalline rocks
under geostatic pressure are in the isostatic state. The contacts between the mineral
grains are continuous and strong. During drilling and recovery of the core, the rock
releases from geostatic pressure and every mineral grain expands in accordance with
its elastic-anisotropic indexes. The strains occurring in every anisotropic mineral
grain lead to the damage of initially strong intergranular contacts and to the rise of a
great many microcracks. The result of this process is a very low average shear wave
velocity registered in the fragments of the SD-3 core recovered from a depth of 12 km.

As for the SD-4 rocks, the greater anisotropy of the SD-3 rocks corresponds to
the greater cavernosity of the borehole. From the data obtained for SD-3 and SD-4,
the following conclusion is quite true: as a rule, the failure in the superdeep boreholes
is caused not by heterogeneity of the stress field, but by great anisotropy of the rock
elastic properties. Rocks with the strongest anisotropy and most pronounced structure
occur in a depth range of 7-9 km. In this range the borehole cavernosity is most
developed. The indexes of LAAA effect are the greatest at these depths, the maximum
ones being registered for the amphibolite samples. One should take into account that
as shear waves propagate in the media with high LAAA, the vibration component
with the polarization vector directed along the normal to the oriented structural
elements is intensively absorbed.

An overall review of the results for acoustopolariscopy of the SD-4, SD-3 and
other rocks enables one to conclude that the older are the rocks, the higher is the
metamorphism facies and the greater is the relative amount of highly anisotropic
rocks exhibiting high LAAA in the massif.

Among other aspects of acoustopolariscopy application for investigation of
crystalline rocks we will point out that the study of palacostresses with this method is
a promising direction. Acoustopolariscopy allows determining spatial orientation and
relative values of palacostress field components in a metamorphosed rock. The
presented method for the palacostress study, as well as the palacomagnetic
measurement method, allows compiling, for instance, the palacogeodynamic map of a
region.

We believe that the acoustopolariscopy method will be useful when solving some
problems in testing materials, especially when studying and developing new
composite, metal-ceramic and other materials of future.

% % %

The main result of the investigation is the discovery of new phenomena: linear
acoustic anisotropic absorption and shear wave depolarization in rock forming
minerals and crystalline rocks. Elastic symmetry of diopside, quartz, apatite is more
complicated than the one revealed in their visual study with electromagnetic
oscillations. At the same time, we have still a long way to go toward a comprehensive
investigation of elastic properties even of the group of most common rock forming
minerals. Our investigation is an initial stage on this way.

The majority of the future applications of the acoustopolarization method, to our
mind, is in the field of creation and tests of high-strength anisotropic materials.
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Attachment 1

Unstructions for processing and drawing acoustopolarigrams on a personal computer

—

bl

>

*

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.

20.

21.

(PC)

Turn on the PC and load the gBASIC program.

After loading gBASIC choose the command Open.

Out of the file menu choose the file Ud2-12cm if the measurements have been
done in the Ud2-12 device. The lines of the computer program in gBASIC will
appear for entering amplitudes, calculation and drawing three pairs of
acoustopolarigrams (VP and VC) when performing acoustopolariscopy on a
cubic sample's sides.

To check up the program operation press the key F5. According to the
program three acoustopolarigrams should be drawn, the image of the cube
with the designation of its axes and sides should be displayed on the screen.
Three successive pressing of the key Enter return the program to the editing
regime, the program lines appear on the screen.

Find the program line starting with 30 DATA and after one interval set all 36
values of 4,ypy obtained by VP for side 1-1".

Find the program line 40 DATA, set 36 values of Aa2ypys.

Set 36 values of Ay, obtained at crossed polarization vectors, in the line 60
DATA.

Set 36 values of A»ycys in the line 70 DATA.

Find the program line starting with 1030 DATA and set 36 values of A4;,,m
obtained for side 2-2'.

Set A>ypyr 1n the line 1040 DATA.

Set A1ycu in the line 1060 DATA.

Set A>ycur in the line 1070 DATA.

Perform all the operations in lines 2030, 2040, 2060, 2070 for the data
obtained on side 3-3' in the same way as in pp. 5-8.

Find line 442 and put the data on the sample between the quotation marks
Turn the acoustopolarigram in accordance with the position of the sample on
the acoustopolariscope table. For this:

find line 312 and put the required angle G = for side 1;

find line 1312 and put the required angle G = for side 2;

find line 2312 and put the required angle G = for side 3.

Check up the drawing correctness for the three pairs of acoustopolarigrams by
pressing the key F5.

Enter the menu by pressing the key Alt, choose the command Save As, press
Enter. In the open window set the name of the new file in which the data will
be kept.

Leave gqBasic, for this purpose press the key Alt, choose the command File out
of the menu, then the command Exit, press Enter.

Below is the computer program in qBASIC for entering amplitudes, calculation and
drawing three pairs of acoustopolarigrams (VP and VC) when performing
acoustopolariscopy on a cubic sample's sides.
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5 KEY 7, "EDIT "

10 REM PROGRAMM 1S FIT FOR CASE - MAXIMUM DECIBEL-MAXIMUM AMPLITUDE

15 PRINT "FOR THE DEVICE UD 2-12"

20 DIM A(100), X(100), B(100), Y(100), P(100), S(100), E(100),
R(100), T(100), U(100), D(100), J(100), L(100)

30 DATA

28,27,28,27,24,23,23,23,24,25,25,26,25,26,26,27,28,29,28,26,23,27,31,

29,28,27,27,28,29,29,29,27,27,26,27,27
40 DATA

25,27,25,23,21,20,20,21,22,24,25,25,25,26,26,27,28,29,29,27,25,27,28,

26,24,24,25,26,27,28,27,26,25,26,26,27
60 DATA

26,23,22,23,26,24,19,22,29,25,23,23,24,27,24,21,19,27,24,23,23,24,26,

26,23,22,21,25,27,22,24,22,22,22,24,24
70 DATA

26,24,25,26,24,20,15,23,28,24,22,21,23,26,20,19,21,25,22,21,21,22,22,

27,22,21,20,23,25,23,23,21,22,21,23,23

90 N = 36
100 FOR I = 1 TO N: READ A(I): NEXT 1
105 FOR 1 = 1 TO N: READ X(1): NEXT 1
110 FOR 1 = 1 TO N: LET P(1) = (A(I) + X(1)) 7 2: NEXT 1
113 FOR 1 = 1 TO N: READ B(1): NEXT I
117 FOR 1 = 1 TO N: READ Y(I): NEXT 1
119 FOR I = 1 TO N: LET S(1) = (B(I) + Y(1)) 7 2: NEXT 1

120 REM FOR I1=1 TO 36:Z=10*(1-1): PRINT TAB(1),,"L=";Z;

125 V = P(1)

130 FOR I = 2 TO N

140 IF V > P(1) THEN 160

150 LET V = P(1)

160 NEXT 1

162 PRINT TAB(10); , "APMAX="; V;
165 LET Q = S(1)

170 FOR I = 2 TO N

175 IF Q > S(1) THEN 190

180 LET Q = s(I)

190 NEXT I

195 PRINT TAB(40); , "ASMAX="; Q;
200W =V: IFQ >V THEN W = Q
205 PRINT TAB(25); , "AMAX="; W;

210 REM LPRINT "1-———oee—o . ]
220 FOR I = 1 TO N

230 P = ABS(A(I) - W): P1

240 S = ABS(B(1) - W): S1

245 Z = 10 * (I - 1)

250 M = 1 * 10

255 REM PRINT TAB(1),,"L=";Z; TAB(20),"AOP=";P1; TAB(50),"A0S=";S1
260 REM LPRINT USING "  ### B H#

270 NEXT |

280 SCREEN 11: CLS : KEY OFF
290 X0 = 105: YO = 240: R = 80

300 1 = 1

310 A = (I - 2) * 3.141592653# / 18
312 G = 0

314 K = G * 3.141592653# / 180

320 S = SIN(A + K): C = COS(A + K)
340 XA = X0 + R * C * P(I)

350 YA = YO - R * S * P(I)

360 XB = X0 + R * C * S(I1)

370 YB = YO - R * S * S(I)

380 1 = 36

382 A = (I - 1) * 3.141592653# / 18

=1/ (10 ~ (P /7 20)): P(D)
=17/ (10 ~ (S 7 20)): s(D

HiH L H#

P1
S1
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386 S = SIN(A + K): C = COS(A + K)
390 XC = X0 + R * C * P(I)
400 YC = YO - R * S * P(I)
410 XD = X0 + R * C * S(I)
420 YD = YO - R * S * S(I)

430 LINE (XA, YA)-(XC, YC), 3

440 LINE (XB, YB)-(XD, YD), 3, , 22211

442 PRINT TAB(2); "Journal No., page, sample No., name of rock,
depth, deposit”

445 LINE (56, 240)-(15, 240), 1: LINE (205, 240)-(215, 240), 1: LINE
(105, 140)-(105, 150), 1: LINE (105, 330)-(105, 340), 1

450 REM S$=INPUT$S(1)

470 FOR 1 = 1 TO 36

480 A = (1 - 1) * 3.141592653# / 18
484 K = G * 3.141592653# / 180

490 S = SIN(A + K): C = COS(A + K)
500 X = X0 + R * C * P(l)

510 Y = YO - R * S * P(1)

520 IF 1 > O THEN LINE (XA, YA)-(X, Y), 3

530 XA = X: YA = Y

570 NEXT 1|

575 LINE (205, 240)-(215, 240), 1: LINE (415, 240)-(425, 240), 1:
LINE (315, 140)-(315, 150), 1: LINE (315, 330)-(315, 340), 1

600 FOR I = 1 TO 36

610 A = (1 - 1) * 3.141592653# / 18
620 S = SIN(A + K): C = COS(A + K)
630 X = X0 + R * C * S(I)

640 Y = YO - R * S * S(I)

650 IF I > O THEN LINE (XB, YB)-(X, Y), 2, , 22222

660 XB = X: YB = Y

700 NEXT |

702 LINE (415, 240)-(425, 240), 1: LINE (615, 240)-(625, 240), 1:
LINE (525, 140)-(525, 150), 1: LINE (525, 330)-(525, 340), 1

1030 DATA
36,38,40,44,44,44,43,41,39,40,45,46,48,48,48,47,44,38,40,42,45,46,47,
47,45,43,41,41,45,47,48,49,48,47 ,45,40

1040 DATA

40,44 ,44,47 ,48,47 ,45,43,40,43,47,48,49,49,48,47,43,38,40,44,46,48,48,
47,45,43,41,42,48,50,50,50,50,48,45,39

1060 DATA
47,46,42,37,31,38,43,46,47,47,46,43,37,30,38,44,46,47 ,47,46,47,37,31,
38,44,47,48,47,46,42,36,30,39,44,46,47

1070 DATA
47,46,44,37,32,40,44,46,47 ,47 ,46,42,36,32,41,46,48,48,48,47,43,36,34,
41,45,47,48,48,46,42,35,32,40,45,47 ,47

1090 N = 36

1100 FOR I = 1 TO N: READ A(l): NEXT 1

1105 FOR I = 1 TO N: READ X(1): NEXT 1

1110 FOR 1 = 1 TO N: LET P(1) = (A(I) + X(1)) 7 2: NEXT 1
1113 FOR | = 1 TO N: READ B(l1): NEXT 1

1117 FOR I = 1 TO N: READ Y(I): NEXT 1

1119 FOR I = 1 TO N: LET S(1) = (B(I) + Y(1)) 7 2: NEXT 1
1125 V = P(1)

1130 FOR I = 2 TO N

1140 IF V > P(1) THEN 1160
1150 LET V = P(I)

1160 NEXT 1
1165 LET Q = S(1)
1170 FOR I = 2 TO N

1175 IF Q > S(1) THEN 1190
1180 LET Q = S(I)
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1190
1200
1220
1230
1240
1245
1250
1270
1290
1300
1310
1312
1314
1320
1340
1350
1360
1370
1380
1382
1386
1390
1400
1410
1420
1430
1440
1470
1480
1484
1490
1500
1510
1520
1530
1570
1600
1610
1620
1630
1640
1650
1660
1700
2030

NEXT 1
W=V: IFQ>V THEN W = Q
FOR I =1 TO N

P = ABSCA(I) - W): P1L =1 7/ (10 ~ (P /7 20)): P(l)
S = ABS(B(I) - W): S1 /7 (10 ~ (S 7 20)): s(I)
Z=10* (1 - 1)

M=1* 10

NEXT 1

X0 = 315: YO = 240: R = 80

1 =1

A= (1 - 2) * 3.141592653# / 18

G=0

K =G * 3.141592653# / 180

S = SIN(A + K): C = COS(A + K)

XA = X0 + R * C * P(I)

YA = YO - s * P(D)

XB = X0 + c * s(D)

YB = YO - S * s(1)

1 = 36

A= -1
S = SIN(A

XC = X0 +

YC = YO -

XD = X0 + c * s()

YO - R * S * S(I)

LINE (XA, YA)-(XC, YC), 3

LINE (XB, YB)-(XD, YD), 3, , 22211
FOR I = 1 TO 36

0003
* ok ok

* 3.141592653# / 18
K): C = COS(A + K)

* C * P(l)
*
*

s * pP()

U000+ N\

A= (1 - 1) * 3.141592653# / 18

K =G * 3.141592653# / 180

S = SIN(A + K): C = COS(A + K)

X = X0 +R*C* Pl
Y=Y0-R*S*P()

IF 1 > 0 THEN LINE (XA, YA)-(X, Y), 3
XA = X: YA =Y

NEXT 1

FOR I = 1 TO 36

A= (1 - 1) * 3.141592653# / 18

S = SIN(A + K): C = COS(A + K)

X = X0 + R *C* S

Y=Y0 -R*S * sl

IF 1 > 0 THEN LINE (XB, YB)-(X, Y), 2, , 22211
XB = X: YB = Y

NEXT 1

DATA

P1
S1

40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,
40,40,40,40,40,40,40,40,40,40,40,40,40

2040

DATA

40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,
40,40,40,40,40,40,40,40,40,40,40,40,40

2060

DATA

34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,
34,34,34,34,34,34,34,34,34,34,34,34,34

2070

DATA

34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,
34,34,34,34,34,34,34,34,34,34,34,34,34

2090
2100
2105
2110
2113

N = 36

FOR I = 1 TO N: READ A(1): NEXT 1

FOR I = 1 TO N: READ X(1): NEXT 1

FOR I = 1 TO N: LET P(1) = (A(1) + X(1)) /7 2: NEXT 1
FOR I = 1 TO N: READ B(1): NEXT 1
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2117 FOR |
2119 FOR |
2125 V = P(1)

2130 FOR I = 2 TO N

2140 IF V > P(1) THEN 2160
2150 LET V = P(I)

0 N: READ Y(I): NEXT 1
0

17
1 TO N: LET S(1) = (B(1) + Y(1)) 7/ 2: NEXT I

2160 NEXT |
2165 LET Q = S(1)
2170 FOR I = 2 TO N

2175 IF Q > S(1) THEN 2190
2180 LET Q = s(1)

2190 NEXT |
2200 W = V: IF Q > V THEN W = Q

2220 FOR 1 = 1 TO N

2230 P = ABS(A(I) - W): P1 =1/ (10 ~ (P /7 20)): P(1) = P1
2240 S = ABS(B(1) - W): S1 =1 7/ (10 ~ (S /7 20)): S(1) = s1
2245 7 = 10 * (1 - 1)

2250 M = 1 * 10

2270 NEXT |

2290 X0 = 525: YO = 240: R = 80

2300 I = 1

2310 A = (I - 2) * 3.141592653# / 18

2312 G = O

2314 K = G * 3.141592653# / 180

2320 S = SIN(A + K): C = COS(A + K)

2340 XA = X0 + R * C * P(I)

2350 YA = YO - R * S * P(I)

2360 XB = X0 + R * C * S(I)

2370 YB = YO - R * S * S(I)

2380 I = 36

2382 A = (I - 1) * 3.141592653# / 18

2386 S = SIN(A + K): C = COS(A + K)

2390 XC = X0 + R * C * P(I)

2400 YC = YO - R * S * P(I)

2410 XD = X0 + R * C * S(I)

2420 YD = YO - R * S * S(I)

2430 LINE (XA, YA)-(XC, YC), 3
2440 LINE (XB, YB)-(XD, YD), 3, , 22211
2470 FOR I = 1 TO 36

2480 A = (I - 1) * 3.141592653# / 18
2484 K = G * 3.141592653# / 180

2490 S = SIN(A + K): C = COS(A + K)

2500 X = X0 + R * C * P(l)

2510 Y = YO - R * S * P(I)

2520 IF | > 0 THEN LINE (XA, YA)-(X, Y), 3

2530 XA = X: YA = Y

2570 NEXT 1

2600 FOR 1 = 1 TO 36

2610 A = (1 - 1) * 3.141592653# / 18

2620 S = SIN(A + K): C = COS(A + K)

2630 X = X0 + R * C * S(I)

2640 Y = YO - R * S * S(I)

2650 IF 1 > 0 THEN LINE (XB, YB)-(X, Y), 2, , 22211

2660 XB = Xz YB = Y

2700 NEXT 1

2705 REM S$ = INPUT$(1)

3010 X = 50: Y = 420" x - not less 50. y — not more 499

3020 SCREEN 11: LINE (X, Y)-(X, Y - 25): LINE (X, Y)-(X + 30, Y)
3030 LINE (X, Y - 25)-(X + 30, Y - 25): LINE (X + 30, Y - 25)-(X +
30, Y)
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3040 LINE (X, Y - 25)-(X + 15, Y - 37.5): LINE (X + 30, Y - 25)-(X +
45, Y - 37.5)

3050

LINE (X + 30, Y)-(X + 45, Y - 12.5)

3060 LINE (X + 12.5, Y - 37.5)-(X + 45, Y - 37.5): LINE (X + 45, Y -
37.5)-(X + 45, Y - 12.5)

3070
3080
3090
3100
3110
3115
3117
3119
3120

LINE (X, Y)-(X + 15, Y - 12.5), , , 22211

LINE (X + 15, Y - 12.5)-(X + 45, Y - 12.5), , , 22211
LINE (X + 15, Y - 12.5)-(X + 15, Y - 37.5), , , 22211
LOCATE 22, 15: PRINT "[3]": LOCATE 15, 1: PRINT "[2°]"
LOCATE 15, 27: PRINT "[3]": LOCATE 9, 41: PRINT "[1]"
LOCATE 9, 67: PRINT "[1]": LOCATE 15, 78: PRINT "[2]"
LOCATE 10, 5: PRINT "1": LOCATE 10, 31: PRINT ""2"
LOCATE 10, 59: PRINT "3"

CIRCLE (X - 14, Y - 270), 14: CIRCLE (X + 194, Y - 270), 14:

CIRCLE (X + 418, Y - 270), 14

3130
3140
3150
3160
3170
3200

3210
3220
3230
3240
3250
3310
3320
3330
3340
3350
3410
3420
3430
3440
3450
3580
3590
3600
3610
3620
3630
3640
3650
3660
4180
4190
4200

LINE (X + 7, Y - 12.5)-(X - 20, Y - 7)

LINE (X + 38, Y - 25)-(X + 60, Y - 25)

LINE (X + 30, Y - 29)-(X + 30, Y - 49)

LOCATE 27, 3: PRINT "[3]": LOCATE 23, 10: PRINT "[1]"
LOCATE 26, 15: PRINT "[2]"

REM LOCATE 1,1:PRINT "INPUT DATA: hl, tDP1, tDS1, tDOP1l, tDOS12,
tDOS13"

DATA 10,10,10,20,20,20

READ H1, TDP1, TDS1, TDOP1, TDOS12, TDOS13
V1l = (H1) / (TDOP1 - TDP1)

V12 = (H1) / (TDOS12 - TDS1)

V13 = (H1) / (TDOS13 - TDS1)

DATA 10,10,10,20,20,20

READ H2, TDP2, TDS2, TDOP2, TDOS21, TDOS23
V22 = (H2) / (TDOP2 - TDP2)

v21 = (H2) / (TDOS21 - TDS2)

V23 = (H2) / (TD0S23 - TDS2)

DATA 10,10,10,20,20,20

READ H3, TDP3, TDS3, TDOP3, TDOS31, TDOS32
V33 = (H3) / (TDOP3 - TDP3)

V31 = (H3) / (TDOS31 - TDS3)

V32 = (H3) / (TD0S32 - TDS3)

LOCATE 24, 43: PRINT USING "#_###"; V11
LOCATE 24, 50: PRINT USING "#_###"; V12
LOCATE 24, 57: PRINT USING "#.###"; V13
LOCATE 25, 43: PRINT USING "#.###"; V21
LOCATE 25, 50: PRINT USING "#_###"; V22
LOCATE 25, 57: PRINT USING "#.###"; V23
LOCATE 26, 43: PRINT USING "#_###"; V31
LOCATE 26, 50: PRINT USING "#.###"; V32
LOCATE 26, 57: PRINT USING "#_###"; V33

S$ = INPUT$(1)

CLS

SCREEN 2: SCREEN 0
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Attachment 2

Density and elasticity indexes of the rock samples from the SG-4 section

Sa- Rock Depth, | Den- | Velocity matrix, LAAA | Orientation | Normalized

mp- name H,m sity Vi, km/s degree | of velocity o

le p, D symmetry o

No. o/sm’ elements, | matrix, km/s

degree
ﬁm ﬁn2

1 2 3 4 5 6 7 8

70 | Amygdaloidal | 293.3 | 2.91 | 5.723.54 3.55 0.00 0 88 5.72 3.54 3.55
oligophyric 3.44 5,68 3.46 0.00 90 0 3.44 5.68 3.46
andesite- 3.65 3.54 5.58 0.00 107 | 77 3.65 3.54 5.58
basalt

78 | Rare- 356.8 |284 |6.50 3.68 3.78 0.00 36 109 | 6.57 3.78 3.77
amygdaloidal 3.78 6.57 3.77 0.06 75 180 | 3.68 6.50 3.78
plagioclase 3.71 3.66 6.24 0.02 117 39 |3.66 3.71 6.24
andesite-
basalt-
bipyroxene

83 | Porphyric 384.8 |288 |6.50 3.56 3.56 0.10 6.50 3.56 3.56
plagioclase 3.52 6.32 3.52 0.00 _ _ 3.52 6.32 3.52
basalt- 3.54 3.54 6.23 0.00 3.54 3.54 6.24
bipyroxene

92 | Plagioclase 405.2 | 2.83 | 5.89 3.34 3.29 0.05 135 41 | 6.08 3.35 3.33
andesite- 3.34 5.84 3.26 0.03 43 142 | 3.38 5.85 3.35
basalt- 3.35 3.38 5.84 0.00 145 74 | 3.29 3.30 5.80
pyroxene

97 | Andesite- 430.0 | 2.84 |4.99 3.16 2.92 0.26 64 171 | 5.28 3.20 3.01
basaltic tuff 3.20 5.28 3.01 0.23 62 151 | 3.16 4.99 2.92
with a large 3.03 3.05 4.98 0.39 15 100 | 3.05 3.03 4.98
number of
fractures

105 | Psephitic- 4359 |293 |5.80 3.28 3.22 0.00 | 61 153 | 6.02 3.38 3.31
psammitic 3.29 5.96 3.31 0.00 | 37 132 | 3.32 5.96 3.26
andesite- 3.31 3.32 5.90 0.03 [108 26 | 3.31 3.29 5.79
basaltic tuffite

114 | Crystal-clastic | 458.7 | 2.92 | 5.25 3.27 3.33 0.03 [174 102 | 5.61 3.40 3.30
psammitic- 3.27 5.38 3.36 0.00 (172 74- | 3.36 5.38 3.27
fine-psephitic 3.33 3.40 5.61 0.00 38 126 | 3.33 3.27 5.25
andesite-
basaltic
porphyrite

152 | Psammitic 637.0 |284 |594 3.21 3.21 0.00 | 38 143 | 6.10 - 3.26
andesite- 3.23 6.03 3.23 0.09 [113 - |3.23 6.03 3.23
basaltic tuffite 3.23 3.25 6.03 0.00 | 80 180 | 3.28 3.23 5.97

172 | Psephitic 759.3 |283 |6.06 3.35 3.48 0.06 [138 50 | 6.22 3.23 5.97
andesite- 3.40 5.88 3.40 0.06 | 17 105 | 3.47 6.11 3.40
basaltic tuff 3.44 3.40 5.83 0.11 | 83 165 | 3.35 3.48 6.06
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Extension of Attachment 2

1 2 3 4 5 6 8

182 | Subalkaline 806.6 | 2.79 | 6.01 3.46 3.47 0.07 173 73 | 6.13 3.46 3.48
quartz diorite 3.50 6.11 3.48 0.06 107 29 | 3.44 6.12 3.52
with massive 3.48 3.52 6.10 0,03 137 68 | 3.47 3.49 6.01
ataxic structure

184 | Subalkaline 8289 |2.81 |596 3.47 3.50 0.03 158 62 | 6.14 3.45 3,52
quartz diorite 3.47 6.12 3.56 0.00 |46 127 | 3.42 5.90 3.45
with massive 3.40 3.43 5.99 0.12 170 78 | 3.40 3.47 5.75
ataxitic
structure

192 | Fine psephitic | 886.7 | 2.81 | 5.43 3.28 3.34 0.10 139 33 | 5.94 3.36 3.26
andesite- 3.27 5.91 3.39 0.00 |26 127 | 3.39 5.91 3.27
basaltic tuff 3.26 3.37 5.85 0.00 171 80 | 3.22 3.26 5.40

199 | Plagioclase- 9242 |2.89 |6.03 3.58 3.57 0.19 |90 36 | 6.22 3.50 3.59
pyroxene 3.43 591 3.44 016 166 99 | 3.57 6.03 3.58
rare-metal 3.50 3.59 6.22 0.41 140 60 | 3.44 3.43 5.91
andesite-
basalt

253 | Pyroxene- 1123.8 | 2.86 | 5.84 3.67 3.60 0.06 |50 140 | 5.97 3.65 3.63
plagioclase 3.65 5.97 3.63 0.00 | 31 119 | 3.67 5.84 3.60
andesite- 3:63 3.65 5.72 0.04 |48 137 | 3.65 3.63 5.73
basaltic tuff

256 | Psephitic 1128.2 | 2,91 | 5.94 3.56 3.58 0.09 19 103 | 6.22 3.64 3.64
andesite- 3.54 6.02 3.59 0.09 |7 107 | 3.59 6.02 3.54
basaltic tuff 3.64 3.64 6.22 0.15 149 61 | 3.58 3.56 5.94

401 | Fragment of 1440.4 | 2.77 | 5.79 3.53 3.64 0.15 167 79 | 6.13 3.64 3.52
pyroxene- 3.54 5.82 3.63 0.04 |28 131 | 3.65 6.09 3.57
plagioclase 3.65 3.75 5.98 0.18 | 140 50 | 3.49 3.51 5.51
amygdaloidal
andesite-
basalt

908 | Andesite- 2468.2 | 297 | 6,46 3.62 3.64 0.00 19 98 | 6.69 3.69 3.69
basaltic 3,64 6.58 3.65 0.10 |4 93 | 3.72 6.62 3.69
coarse- 3.69 3.72 6.62 0.07 151 51 | 3.59 3.58 6.42
psephitic tuff
with ataxitic
structure

918 | Psammitic 2496.4 | 2.89 | 6.23 3.69 3.73 0.0.7 | 178 94 | 6.45 3.67 3.69
fine- 3.66 6.23 3.73 0.03 | 153 65 | 3.68 6.33 3.74
psephitic tuff 3.78 3.70 6.36 0.16 | 135 38 | 3.63 3.74 6.35
of andesite
basalt
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End of Attachment 2

1 2 3 4 5 6 7 8

934 | Prehnitized 2530.6 | 2.90 | 6.28 3.42 3.51 0.00 | 20 113 | 6.33 3.45 3.44
coarse- 3.42 6.04 3.42 0.06 | 170 90 | 3.51 6.28 3.42
psephitic tuff 3.45 3.44 6.33 0.02 | 113 19 | 3.42 3.42 6.04
of andesite-
basalt

1119 | Psammitic 2843.2 | 2.85 | 6.49 3.67 3.67 0.00 | 102 8 | 6.58 3.67 3.68
andesite- 3.66 6.49 3.67 0.03 | 11 84 | 3.67 6.49 3.67
basaltic tuff 3.67 3.68 6.58 0.09 | 35 108 | 3.67 3.66 6.49

1136 | Psammitic 2866.0 | 2.82 | 6.23 3.54 3.50 0.00 | 109 | 171 | 6.49 3.58 3.53
andesite- 3.53 6.49 3.58 0.04 |12 114 | 3.49 6.28 3.44
basaltic tuff 3.44 3.49 6.28 0.08 | 12 104 | 3.54 3.50 6.23

1138 | Fine- 2867.8 | 2.84 | 5.97 3.60 3.51 0.16 | 47 135 | 6.16 3.62 3.43
psephitic- 3.49 5.76 3.57 0.16 | 138 49 | 3.61 6.01 3.64
psammitic 3.62 3.56 5.91 0.20 | 140 48 | 3.46 3.45 5.21
tuff

1161 | Fine- 2909.0 | 2.86 | 5.49 3.03 3.43 0.09 | 142 49 | 5.67 3.42 3.39
psephitic- 3.24 5.08 2.97 0.23 | 167 73 | 3.45 5.66 3.09
psammitic 3.25 3.00 5.06 0.18 | 127 32 | 3.06 3.07 4.26
tuff of
andesite-
basalt

1191 | Ataxitic 2963.6 | 290 | 540 3.42 2.94 0.20 | 35 116 | 5.40 3.34 2.93
psammitic- 3.31 5.20 2.92 0.40 | 17 106 | 3.28 5.04 3.18
psephitic 3.05 2.60 4.22 0.28 | 170 75 | 2.94 2.97 3.89
andesite-
basaltic tuff

1223 | Homogenous | 3068.0 | 2.84 | 548 2.94 345 0.11 | 20 112 | 5.66 3.44 2.98
psammitic 2.84 4.05 3.05 0.07 | 49 129 | 3.49 561 3.02
tuff 3.42 2.97 5.47 0.00 | 75 167 | 2.84 3.08 3.84

Note. Additional faces were made for samples NeNe 105, 152, 172,192, 401, 908, 1138, 1161
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Attachment 3

Constants of SD-4 rock samples elasticity

Number Depth H, m C11 C22 C33 C23 C44 C55 Css
of
sample
70 293.3 9.52 | 9.39 | 9.07 - 3.56 | 3.77 | 3.54
78 356.8 12.3]112.0| 11.0 - 3.98 | 3.92 | 3.95
83 384.8 122 | 11.5 | 11.2 - 3.59 | 13.63 | 3.61
92 405.2 10.5 | 9.68 | 9..52 - 3.13 | 3.10 | 3.20
97 430.1 79 |71 704 |199| 251 | 2.61 | 2.87
105 435.9 10.6 | 104 | 9.82 - 3.14 | 3.21 | 3.29
114 458.7 9.19 | 8.45 | 8.05 - 3.12 | 3.21 | 3.34
152 637.0 10.6 | 10.3 | 10.01 - 296 | 3.04 | 2.96
172 759.3 10.9 | 10.6 | 10.4 - 3.35 | 3.47 | 3.60
182 806.6 10.5| 104 | 101 - 3.43 | 3.37 | 3.32
184 828.9 10.6 | 9.78 | 9.29 - 3.36 | 3.36 | 3.32
192 886.7 9911981819 |0.22]| 3.00 | 295 | 3.20
199 924.2 11.2 |1 10.5 | 101 - 3.55 | 3.57 | 3.61
253 1123.8 10.2 198 |94 - 3.74 | 3.79 | 3.83
256 1128.2 11.3 | 10.6 | 10.3 - 3.67 | 3.79 | 3.80
401 1140.4 104 | 10.3 | 8.41 - 3.49 | 3.40 | 3.68
908 2486.2 13.3 | 13.0 | 12.2 - 3.92 | 3.94 | 4.08
918 2496.4 1211116 | 11.6 - 4.06 | 3.88 | 3.92
934 2530.6 116 | 11.4 | 10.6 - 3.39 | 3.41 | 3.51
1119 2843.2 12.3 1 12.0 | 12.0 - 3.83 | 3.85 | 3.84
1136 2866.0 1191 11.1] 10.9 - 3.39 | 3.52 | 3.52
1138 2867.8 10.8 | 10.3 | 7.71 1.82 | 3.37 | 3.37 | 3.71
1161 2909.0 9.19 | 9.16 | 5.19 - 271 | 2.88 | 3.37
1191 2963.6 8.46 | 7.37 | 4.39 274 | 250 | 3.18
1223 3068.0 9.10 | 8.94 | 4.19 - 264 | 240 | 3.41

Notes: 1. Values C,g are given in 10" Pa.

2. Names of rocks see in Attachment 2.
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Attachment 4

Characteristics of SD-4 rock samples elasticity

Number Depth, | &1133 £2233 Ar 71213 71223 Type of | Ange
of H, m elasticity | &
sample degree.
70 293.3 0.025 | 0.018 | 0.33 | -0.032 | -0.003 R -
78 356.8 0.053 | 0.042 | 0.24 | 0.000 | -0.004 G -
83 384.8 0.043 | 0.014 1.00 | -0.003 | -0.003 R -
92 405.2 0.048 | 0.009 1.39 | 0.016 | 0.0119 R 49
97 430.1 0.06 | 0.002 1.87 | 0.047 | 0.064 G 60
105 435.9 0.04 |0.029 |0.30 |0.012 0.022 R -
114 458.7 0.069 | 0.025 | 0.94 | 0.019 | 0.032 R 80
152 637.0 0.022 | 0.01 0.74 | 0.012 | 0.00 R -
172 759.3 0.026 | 0.0082 | 1.05 | 0.018 | 0.035 R 76
182 806.6 0.020 | 0.018 | 0.084 - -0.025 G -
184 828.9 0.068 | 0,026 | 0.89 - -0.007 R 69
192 886.7 0.10 | 0.094 | 0.062 | 0.04 0.033 G 56
199 924.2 0.052 | 0.020 | 0.88 | 0.06 0.008 R 81
253 1123.8 | 0.044 | 0.021 | 0.70 | 0.006 | 0.012 R -
256 1128.2 | 0.047 | 0.014 | 1.11 0.029 | 0.018 R 80
401 1440.4 | 0.113 | 0.11 0.073 | 0.0038 | 0.029 G 79
908 2486.2 | 0.042 | 0.031 | 0.30 | 0.017 | 0.019 R 86
918 2496.4 | 0.021 | 0.002 | 1.71 0.0141 | 0.0177 R 86
934 2530.6 | 0.048 | 0.040 | 0.189 | 0.0144 | 0.172 G -
1119 2843.2 | 0.014 | 0.00 2.00 - 0.0014 G -
1136 2866.0 | 0.042 | 0.008 | 1.36 | 0.00 0.018 R 66
1138 2867.8 | 0.182 | 0.154 | 0.170 | 0.049 | 0.019 G 57
1161 2909.0 | 0.331 | 0.329 | 0.006 | 0.061 0.103 G 74
1191 2963.6 | 0.338 | 0.296 | 0.27 | 0.113 | 0.071 R 76
1223 3068.0 | 0.474 | 0.46 0.029 | 0.160 | 0.120 G 70

Note: Names of rock see in Attachment 2.
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Attachment 5

Density and elasticity indexes of the samples from the SG-3 section

Sample Rock name Depth H, | Den- | Velocity matrix LAAA | Bire-
No m sity Vi effect | fringe-
2, km/s D nce
glem® index
B
1 2 3 4 5 6 7
D Dolomite Surface 2.84 | 6.14 3.54 3.42 - 0.034
3.56 6.11 3.59 0.001
3.58 3.54 5.83 0.011
T-26-2 Melanocratic biotite- | Surface 280 | 5.05 3.34 2.68 - 0.219
plagioclase gneiss 3.17 4.95 2.63 0.186
2.83 2.65 4.02 0.066
2264B Fyllite 835.8 298 | 6.72 3.25 3.20 - 0.016
3.20 6.06 3.19 0.003
3.33 3.16 5.79 0.052
21878 Schist after agglomerate | 1013.6 2.88 | 6.47 3.13 3.39 - 0.078
tuff 3.17 559 3.11 0.019
3.29 3.11 5.39 0.056
10026 Thin interstratification of | 2633.1 2.88 | 6.05 3.40 3.14 - 0.079
fyllite with aleurolite 3.41 566 3.22 0.057
3.19 3.20 5.49 0.003
18334 Arkose sandstone with | 4853.6 2.77 | 3.26 2.32 2.03 - 0.133
magnetite 2.28 3.16 1.96 - 0.15
2.07 2.05 2.24 - 0.01
18994 Albitophyre 5490.0 2.84 | 442 3.04 2.94 - 0.033
254 1.71 1.43 -
- - 253 -
19131S | Amphibole-plagioclase 5558.2 2.93 | 5.09 3.29 3.00 0.04 | 0.09
schist 3.24 483 2.82 0.01 | 0.138
3.00 2.69 4.67 0.03 | 0.108
19385 Amphibole-plagioclase 5776.0 290 | 5.74 2.76 2.62 - 0.052
schist 2.81 3.73 2.15 - 0.266
3.53 2.25 3.30 - 0.442
19402S | Amphibole-plagioclase 5893.0 296 |4.99 3.06 2.83 0.13 |0.08
schist with biotite 2.93 4.22 2.60 0.14 | 0.12
258 - 3.38 0.39 -
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Extension of Attachment 5

1 2 3 4 5 6 7
20915S | Amphibole-plagioclase 6517.8 293 | 5.26 2.46 2.22 0.16 | 0.10
schist with chlorite 244 3.42 1.86 0.28 | 0.27
2.26 1.97 2.59 0.08 | 0.14
21720 Amphibole-plagioclase 6637.7 294 |6.13 3.58 3.43 0.02 | 0.04
schist with chlorite 3.41 517 3.36 0.02 | 0.02
3.17 2.95 4.44 0.08 | 0.07
21720 Amphibole-plagioclase 6637.7 294 | 471 2.89 2.63 0.17 | 0.094
schist with chlorite 2.68 3.80 2.59 0.55 | 0.034
2.69 2.57 3.65 0.51 | 0.046
21720S | Amphibole-plagioclase 6637.7 297 |5.89 291 2.82 0.02 | 0.031
schist with chlorite 2.95 3.74 2.43 0.12 | 0.193
2.77 2.46 3.29 0.04 | 0.118
21720S | Amphibole-plagioclase 6637.95 294 |6.66 3.13 3.02 0.03 | 0.036
schist with chlorite 3.15 4.28 2.67 0.13 | 0.164
3.13 2.68 4.23 0.03 | 0.154
24212 Apodiabasic 7467.5 3.13 | 5.27 2.81 2.22 0.06 | 0.234
blastoamigdaloidal 2.65 3.17 1.70 0.03 | 0.436
amphibolite (A-12) 2.21 1.85 2.68 0.14 | 0177
24221S | Biotite-plagioclase 7469.8 269 |4.05 213 1.88 - 0.124
gneiss 212 2.10 1.80 - 0.163
2.04 1.51 2.00 - 0.300
24256S | Staurolite-andalusite- 7475.7 274 | 454 249 2.49 0.65 | 0.000
sillimanite-two-mica 2.57 3.50 2.16 0.61 0.173
gneiss 2.23 1.94 3.49 0.14 | 0.139
44580A | Mesocratic amphibolite 7643.4- 299 |4.90 3.04 2.73 0.16 | 0.107
7651.4 3.03 3.71 2.36 0.62 | 0.248
2.65 2.43 3.13 0.42 | 0.087
44579 Clinopyroxene- 7651.4 297 | 4.68 2.23 2.01 0.17 | 0.103
hornblende amphibolite, 2.17 3.68 1.54 0.04 | 0.340
crystalloschist 1.94 1.86 2.30 0.25 | 0.042
(A-4)
24788S | Clinopyroxene 7659.2 3.04 | 6.40 2.88 3.21 0.17 | 0.108
amphibolite 2.94 486 2.58 0.73 | 0.130
3.14 2.61 4.54 0.79 | 0.184
24804 Amphibolite 7660.6 3.02 | 3.85 2.08 1.87 - 0.106
1.97 2.78 1.68 - 0.158
1.77 1.58 1.66 - 0.113
24947* | Amphibolite with sphene | 7484.6 3.01 | 5.27 3.05 2.97 0.03 | 0.026
3.06 4.83 2.97 0.02 | 0.058
- 273 438 |0.00 -
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Extension of Attachment 5

1 2 3 4 5 6 7
24996S | Plagioclase granite with | 7695.5 265 |521 272 2.54 0.09 | 0.068
amphibole 2.84 433 2.48 0.51 | 0.135
2.55 2.52 3.36 0.03 | 0.012
25386 Migmatite 7779.4 2.64 | 3.54 2.07 1.68 - 0.208
2.53 1.93 2.04 - -
2.06 250 - - -
23469* | Apodiabasic blasto- 7822.0 3.06 | 3.67 2.97 0.42 0.42 | 0.210
amygdaloidal 3.45 5.26 2.89 0.30 | 0.176
amphibolite 3.05 2.76 4.71 0.46 | 0.010
26480 Phlogopite-anthofyllite- 7894.4 294 | 437 240 2.23 0.75 | 0.073
actinolite schist - 3.66 2.31 0.23 | -
(A-11) 269 - 342 0.02 |-
26715S | Talc-phlogopite- 7930.9 295 | 5.73 3.40 2.57 0.82 | 0.278
tremolite schist 3.35 4.10 1.76 0.86 | 0.571
- 1.80 2.22 0.13 | -
26716S* | Talc-phlogopite- 7931.3 280 | 525 345 - 0.29 | 0.169
tremolite schist 3.39 5.13 2.86 0.34 | 0.042
3.02 2.89 4.32 0.01 -
26746** | Apodiabasic 7944.6 292 | 4.40 250 2.54 0.15 | 0.026
cummingtonite- 2.53 3.36 2.33 0.09 | 0.082
hornblende-amphibolite 248 2.15 3.20 0.04 | 0.142
(A-3)
27026S | Cummingtonite 7959.1 2.89 |5.38 3.13 2.39 0.49 | 0.268
amphibolite 3.06 4.66 2.24 0.68 | 0.310
215 212 4.41 0.16 | 0.014
27227S* | Epidote-biotite- 8017.0 299 |5.39 2.84 248 0.31 | 0.135
amphibole-plagioclase 2.61 4.64 2.01 0.63 | 0.259
crystalloschist 2.37 218 4.21 0.56 | 0.084
27262** | Phlogopite-anthofyllite- 8022.4 3.12 | 519 2.72 2.65 0.05 | 0.026
actinolite schist 2.78 3.42 2.18 0.08 | 0.241
(A-11) 2.68 2.33 3.37 0.02 | 0.139
28184S | Epidote-biotite- 8234.0 2.67 | 3.99 2.58 2.25 0.17 | 0.136
plagioclase gneiss 2.53 3.72 213 0.14 | 0.172
2.29 2.28 3.40 0.26 | 0.390
28744A | Apodiabasic 8359.4 291 | 5.63 3.35 2.09 0.44 | 0.463
cummingtonite- 3.36 4.58 2.04 0.38 | 0.488
hornblende amphibolite 2.05 2.01 2.21 0.42 | 0.020
(A3)
29686* | Amphibolite with sphene | 8538.0 3.00 | 4.54 259 1.99 0.19 | 0.262
3.69 1.76 2.16 0.28 -
2.15 3.56 - 0.65 0.005
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Extension of Attachment 5

1 2 3 4 5 6 7
30137 Epidote-biotite- 8589.5 267 |3.23 1.79 1.56 - 0.137
plagioclase gneiss 1.65 2.77 1.80 0.187

1.56 1.91 2.49 0.200

31122 Magnetite-ilmenite- 8727.5 3.05 | 5.31 293 2.75 0.06 | 0.063
hornblende amphibolite, 2.86 3.98 2.44 0.47 | 0.158
apogabbro (A-8) 2.62 2.41 3.43 0.51 | 0.083

31268 Amphibolite with sphene | 8760.9 3.06 | 6.18 3.27 3.31 - 0.012
3.38 5.82 3.36 - 0.006

3.44 3.37 4.89 - 0.021

31260 Epidote-hornblende 8759.9 3.00 | 4.75 2.73 2.30 0.10 | 0.170
amphibolite 2.72 3.63 2.10 0.26 | 0.257

(A-5) 2.13 1.84 3.02 0.13 | 0.146

31272 Epidote-hornblende 8761.4 3.02 | 5.30 3.38 2.56 0.24 | 0.276
amphibolite 3.20 4.85 2.40 0.26 | 0.285

(A-5) 2.50 2.43 3.53 0.21 | 0.028

31537A** | Amphibolite with sphene | 8856.0 3.056 |3.73 1.84 219 0.18 | 0.173
2.14 2.76 1.52 0.95 | 0.338
1.99 1.50 2.51 0.20 | 0.280

31568 Epidote-hornblende 8862.8 298 |3.79 241 217 0.31 | 0.104
amphibolite 2.31 3.04 1.85 0.57 | 0.221
(A-5) 2.05 1.92 242 0.23 | 0.065
31587 Garnet-clinopyroxene- 8867.0 3.03 | 4.82 2.77 2.35 0.47 | 0.164
hornblende amphibolite, 2.81 4.08 2.18 0.45 | 0.252
fine-grained apogabbro - 200 269 |0.09 -
(A-9a)
31863 Amphibolite with sphene | 8939.6 298 |5.32 3.02 3.04 - 0.007
3.03 4.61 2.78 - 0.086
3.11 2.82 4.46 - 0.098
31868 Amphibolite with sphene | 8940 3.06 | 5.06 2.89 2.54 0.06 | 0.128

2.77 3.51 2.29 0.39 | 0.189
2.65 2.26 3.29 0.18 | 0.158

34191A | Garnet-clinopyroxene- 9169.8 3.01 | 4.82 2.87 2.40 0.06 | 0.178
hornblende amphibolite, - 3.83 1.66 0.25 -
fine-grained apogabbro 2.39 1.78 2.96 0.24 | 0.158

(A-9a)

34876 Biotite-hornblende 9268.3 3.12 | 4.44 242 1.82 0.48 | 0.283
amphibolite, 2.38 2.86 1.74 0.88 | 0.310
hornblendite (A-6) 1.80 1.75 2.10 0.87 | 0.028

35426 | Amphibolite with sphene | 9451 3.08 | 3.98 2.05 2.38 0.04 | 0.148

225 365 176 | 011 |0.244
2.33 1.90 3.38 | 0.07 | 0.203
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End of Attachment 5

1 2 3 4 5 6 7

35679 Biotite-hornblende 9534.3 3.12 | 540 2.53 2.19 0.43 | 0.144
amphibolite, 2.49 3.56 2.49 0.23 | 0.000
hornblendite (A-6) 3.08 1.98 3.08 0.15 | 0.434

35924** | Phlogopite- 9672 3.02 | 4.92 3.01 2.30 0.51 | 0.267
anthophyllite-actinolite 2.89 4.55 2.18 0.01 | 0.280
amphibolite, 2.43 2.36 3.76 0.13 | 0.029
apoultrabasic schist (A-
11)

42413-1* | Epidote-biotite- 9813.1 296 | 542 3.14 3.18 0.23 | 0.01-3
hornblende amphibolite, 3.04 4.78 2.79 0.10 | 0.086
most ancient (A-1) 2.90 2.60 4.03 0.59 | 0.109

36398 Granite-migmatite after | 9865.0 263 | 3.10 2.02 1.63 - 0.213
epidote-biotite — 2.07 2.64 - - -
plagioclase gneiss 1.64 1.49 2.09 - 0.096

42918-1 | Epidote-biotite- 10209.3 291 | 476 2.85 2.71 0.04 | 0.05
hornblende amphibolite, - 3.84 2.28 0.74 -
most ancient (A-1) 2.54 2.35 3.65 0.73 | 0.078

Note: No* - direction of symmetry elements is not parallel to the sample edges

No** - one of directions of the symmetry elements is not parallel to the sample edges
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Attachment 6

Constants and characteristics of SD-3 rock samples elasticity

Num- | Cy1 | C2 | Caz | Cas | Css Ces |s1133 | €233 | 11213 | 11223 Ar | Type
ber of elas-
of ticity
sam-
ple

1 2 3 4 5 6 7 8 9 10 11 12 13
D 10. | 10. | 96 | 3.6 | 348 | 3.58 | 0.0 | 0.04 |0.01 |- 0.10 G
T-26-2 | 71 168 | 4519|212 | 297 |0.2 |0.23 |0.18 |0.23 0.10 G
2264B | 13. | 10. | 99 | 30 | 318 | 3.10 |01 ]0.04 |- 0.01 1.10 R
2187C | 12. | 9.0 | 82 | 2.7 | 3.21 | 2.86 | 0.2 | 0.03 |- 001 | 137 | R
10026 | 10. | 9.2 | 86 | 29 | 2.88 [ 3.33 | 0.1 |0.03 | 0.07 |0.06 1.07 R
18334 | 29 | 27 113|105 | 116 | 146 |04 041 |012 |0.15 0.10 G
18994 | 55 |18 |18 | 0.7 | 245 | 262 | 0.7 | 0.00 |0.03 |0.94 1.98 G
19131 75168 | 63|22 | 264 311 |0.0 |]0.03 |0.08 |0.19 0.89 R
19385 | 95|40 |31 |14 192|225 |07 |013 |0.78 |0.03 | 1.40 R
194028 | 7.3 | 52 | 33 | 20 | 217 | 266 |04 | 025 |0.10 |0.15 | 0.63 R
20915 | 81 (3419 |10 | 150 | 176 |10 |[0.32 |0.08 |0.28 | 1.05 R
21720 | 11. | 78 | 57 | 29 | 320 | 358 |03 |0.16 | 0.06 |0.10 | 0.79 R
21720' | 10. | 41 |32 | 17 | 232 | 255 |0.7 |[0.13 | 0.04 |0.07 | 142 R
21720 | 65|42 |39 |19 | 208 | 227 |02 [0.04 [0.04 |0.19 | 1.50 R
21722 | 13. | 53 | 52 | 21 | 278 | 290 |05 |0.01 |0.01 |0.17 | 1.92 G
24212 |86 |31 |22 |09 |154 |233 |09 |0.18 | 023 |0.53 | 1.36 R
24221 |44 |11 |10 (07 |1.03 |[121 |10 |0.05 |0.08 |0.28 | 1.81 G
24256 |56 |33 |33 |11 |153 [175 |03 |0.00 |0.02 |0.23 | 1.96 G
44580 |71 |41 |29 |16 216 |275 |05 |0.18 |0.13 |0.29 | 1.01 R
44579 |65 (40 |15 |08 |116 |144 |10 | 060 |0.11 |0.29 0.53 R
24788 |(12. |71 |62 |20 |3.06 |257 |04 |0.07 |- 0.12 1.41 R
24804 (44 |23 |08 |08 |1.00 124 |13 |0.67 |0.11 |0.24 0.65 R
24947 (83 |70 |57 |24 |265 |282 |02 |010 |0.03 |0.07 0.66 R
24996 (7.1 |49 |29 |16 |1.71 | 205 |05 |0.28 |0.09 |0.11 0.62 R
25386 (33 |16 |16 |10 |090 |[1.13 |04 |0.01 |0.11 | 0.03 1.89 G
23469 (99 |84 |67 |24 |277 388 |02 |011 |0.18 |0.26 0.57 R
26480 (56 |39 |34 |15 |178 [1.69 |02 |0.07 |- 0.03 1.19 R
26715 |96 |49 |14 |09 |195 |336 |15 |0.85 |0.15 |0.84 | 0.60 R
26716 (7.7 |73 |52 |23 |255 327 |02 |018 |0.13 |0.19 0.14 G
26746 |56 |33 |29 |14 |184 | 185 |03 |0.05 |0.00 |0.12 1.53 R
27026 (83 |62 |56 |13 | 149 | 277 |02 |0.05 |0.36 |042 1.18 R
27227 |86 |64 |53 |13 |1.76 |222 |02 |010 |0.11 |0.29 0.93 R
27262 (84 |36 |35 |15 |221 |231 |05 |0.01 |0.03 |0.21 1.89 G
28184 (4.2 |36 |30 |13 |138 [1.74 |01 |0.09 |0.12 | 0.16 0.59 R
28744 (92 |61 |14 |11 | 125 328 |15 |1.07 |0.62 | 0.65 0.36 R
29686 (6.18 | 4.0 | 3.8 | 1.1 | 129 | 2.02 |01 |0.03 |0.24 |0.32 1.53 R
30137 |2.7 20|16 |09 (065 |0.79 |02 |011 | 010 |- 0.90 R
31122 |85 | 47 | 35|17 |218 | 253 |05 |0.16 |0.07 |0.19 | 1.09 R
31268 |11. | 10. | 76 | 3.4 | 3.48 |3.38 | 0.2 |0.06 |-0.16 | -0.12 | 0.36 R
31260 |6.77 | 39 | 27 | 1.1 | 147 | 223 |05 |0.20 |0.22 |0.38 | 0.96 R
31272 |84 |71 |37 |17 |193 |327 |05 |0.37 |0.30 |0.36 | 0.29 R
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End of Attachment 6

1 2 3 4 5 6 7 8 9 10 11 12 13
31537A |4.24 12321192069 | 1.33 | 1.21 [0.48 [0.099 (-0.048 [0.318 | 1.32 R
31568 |4.28(2.75|1.74|1.06| 1.33 | 1.66 [0.57 [(0.25 ([0.118 [0.255 | 0.75 R
31587 | 7.04(5.04|1219|1.32| 1.67 | 2.36 [0.79 (0.52 (0.187 [0.335 | 0.42 R
31863 |8.43(6.33|5.93|2.34| 2.82 | 2.73 |0.193(0.034 |(-0.016 (0.079 | 1.41 R
31868 |7.83(3.77|3.31|1.58| 2.06 | 2.28 [0.54 (0.27 (0.08 (0.197 | 1.56 R
34191A |6.99 (4411264089 | 1.73 | 2.48 [0.63 [0.294 (0.196 |(0.67 0.73 R
34876 |6.15(25511.3810.95| 1.02 | 1.80 (1.11 [(0.36 [0.33 [0.38 1.02 R
35426 |4.88(4.1013.52|1.27| 211 | 1.42 |0.75 (0.156 |(-0.089 (0.082 | 1.31 R
35679 |9.10(3.95|1296|1.56| 2.17 | 1.97 [0.177(0.079 (-0.049 (0.120 | 0.76 R
35924 |7.31(6.25|14.27|1.56| 1.69 | 2.63 [0.308(0.210 [0.252 (0.299 | 0.38 R
42413-1|8.69|6.76 [4.81]|2.15| 2.74 | 2.83 |0.35 |0.186 |0.016 |0.148 | 0.60 R
36398 |2.53|1.83|1.15|0.58 | 0.70 | 1.10 |0.48 |0.263 |0.247 (0.376 | 0.60 R
42918-1(6.59 (4.29 | 3.88 | 1.56 | 2.00 | 3.18 |0.304|0.052 [0.059 [0.23 1.42 R
43553 (4.36 (399354116 | 1.23 | 1.74 |0.11 |0.061 [0.186 |0.222 | 0.56 R
43579 |[5.21(3.85(3.16(1.32| 1.62 | 1.61 |0.285(0.104 |-0.004 {0.099 | 0.93 R
414874 14.6(13.3|11.6 | 4.18 | 4.19 | 4.43 |0.120(0.070 [0.029 |0.032 | 0.52 R
44340-2(6.40 (6.29 |6.10 | 2.58 | 2.43 | 2.65 |0.024|0.016 [0.046 [0.14 0.44 R

Notes: 1. Values C,s are given in 10" Pa.
2. Names of samples see in Attachment 5.
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